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Using standard numerical Monte Carlo lattice methods, we study non-universal properties of the phase
transition of three-dimensionap* theory of a two-component real field=(¢;,$,) with O(2) symmetry.
Specifically, we extract the renormalized values{@f)/u andr/u? at the phase transition, where the con-
tinuum action of the theory id3x[ 3|V ¢|2+ 3r p2+ (u/4!) $*]. These values have applications to calculating
the phase-transition temperature of dilute or weakly interacting Bose @asthsrelativistic and nonrelativis-
tic). In passing, we also provide perturbative calculations of vario@a) lattice-spacing errors in three-
dimensional ON) scalar field theory, whera is the lattice spacing.
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I. INTRODUCTION A<¢2>c
T —0.001198-0.000017. (1.9

A long-standing problem is how to compute the first cor-
rectionAT,, due to interactions, to the critical temperature  The critical valuer ., of r is also useful for various theo-
T for Bose-Einstein condensation of a very dilute nonrelaretical applications, such as determining corrections to the
tivistic homogeneous Bose gas in three dimensions. In Refalue of the chemical potential at the transit{@&), or to the
[1], we review how this problem is related to three- critical temperature of a trapped gEB], or to the critical
dimensional @) ¢* field theory[2], present the results of temperature of ultrarelativistie* theory at zero chemical
lattice simulations of that theory, and so determiik.. The  potential[4]. The ¢? interaction is associated with an ultra-
purpose of the present paper is to provide details of thosgiolet (UV) divergence of the three-dimensional theory and
simulations. The lattice results presented here may also bg must be renormalized. If one chooses the renormalization
applied to relativistic Bose gas€3,4] and to nonrelativistic scale; to be of orderu then, by dimensional analysis, the

gaﬁ'isrelg-gi:;ae?lzligggocgn;@%heory has the continuum ac- "€1°" malized value afe(u) must b? proportional qu' Th?
tion precise scheme used to renormalizand the precise choice
of u, is a matter of convention. In this paper, we will report
B s |1 , L L, ou a measurement of the numerical constarti? for r defined
S—J X SVt 5ré*+ 7(¢9%, (LD by dimensional regularization and modified minimal subtrac-
tion (MS) at a renormalization scale pf=u/3. Our result is
where ¢=(¢;,¢,) is a two-component real field angd? o
= 2+ ¢3. For fixedu, we will vary r to reach the second- r¥S(u/3)
order critical pointr ((u) of this model. The shift in the criti-

cal temperature of a nonrelativistic homogeneous single-
species Bose gas is given in terms of this theory 3y

>—=0.0019201+0.000 002 1. (1.5
u

One may convert to other choicesEfoy the(exac} identity

AT°=—2m—kBT°A<¢2>C, (1.2) M) _ ™) 2 g

1
T 2 In—.
0 3h°n Uz U2 9(477)2 o

(1.6

wherem is the boson mass) is the number density, and ) ) ) ,
In Sec. I, we discuss the lattice action we use, its rela-

A D =[P u—[(?clo (1.3  tionship to continuum fields and parameters, how we correct
for O(a) lattice spacing errors, and the algorithms we use for
represents the difference between the critical-point value o$imulation. Section Il details our procedure for finding the
<¢>2) for the cases ofi) u non-zero andii) the ideal gas transition, based on the method of Binder cumulants. In Sec.
=0 (with r—0 from above. The result forA{¢?). in the 1V, we present our initial data, show that we have simulated
0O(2) theory (1.2) can only depend om and so, by dimen- moderately large volumes, and then discuss how to analyze
sional analysis, it must be proportional oA primary goal  the remaining finite-volume corrections by making use of the
will be to discuss in detail the measurement of the numericaknown critical exponents associated with this universality
constantA({ ¢?)./u from lattice Monte Carlo simulations of class. The corresponding numerical extrapolations of the
the theory. As reported in Reffl], our result is finite-volume corrections are given in Sec. V. Numerical ex-
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trapolation of the continuum limit is presented in Sec. VI. A K2=Kk2+0(a%"). 2.7
table of all our raw data for various size lattices and values of :

coupling may be found in Appendix A. The derivations of The unimproved Laplacian ha3(a?) error, while the im-

the O(a) lattice-spacing corrections used in this paper argyroved Laplacian has oni@(a*) errors.
given in Appendix B. The remaining appendices include

various discussions of scaling laws used in the text, an ana-
lytic calculation of results for small lattice volumes, and a i i i
critical discussion of one of the early simulations, in the Oge of our tasks is to calculate the continuum ratio
literature, of the Bose-Einstein condensation temperature dh(#*)/U. In the lattice theory2.1), the free field (1o=0)

A. An unimproved calculation of A{¢)?

2 .
dilute nonrelativistic gases. result for(d%) is

1
Il. LATTICE ACTION, MEASUREMENT, (D2)y=0=(D3+ <p§>u020:2f =, 28

AND ALGORITHM keBz k
The bare lattice Lagrangian has the form where the integral is over the Brillouin zohig|< 7/a. Scal-

1 . ing out the dependence @) we define
0
L=a’, [§<—¢1Vét¢1—¢zvad>z>+§<fb§+d>§> s 1

477a£fkeBZ i 29

Up
+E(q>§+¢>§)2 , (2.2

For the improved Laplacian, we obtain the value of the con-

: . . . . stant by numerical integration
wherea is the lattice spacing. In an actual simulation, one

invariably chooses lattice units wheae=1, or equivalently 3 =2.752383911 207 52. (2.10
works with rescaled fields and parametdrs=a*?d, r} ' . _ .
:azro, andu'a: aug. For the sake of presentation' howeveryon the Iattlce, the most Stralghtforward |mp|ementat|0n of
we will generally avoid specializing to lattice units. the ratioA(¢?)/u is then

We work on a simple cubic lattice, and will work in cubic A(®?) 1
volumesL X L X L with periodic boundary conditions, corre- 0 =_
sponding to L/a)® sites. The simplest possible implementa- Uo Uo
tion of the lattice Laplacian, which we call the *“unim-
proved” choiceVZ, would be

23
41ra

(D?)— . (2.1

This will approach the desired continuum valueues— 0,
but the lattice spacing errors at smak will be O(ua).

ijd)(x) =a_22 [P (x+ai)—2P(x)+P(x—ai)], B. Relationship between lattice and continuum fields
! (2.2 and parameters

One of our goals will be to reduce finite lattice-spacing
where the sum is over unit vectors in the three lattice direcerrors, so that we may obtain better estimates of the con-
tions: (1,0,0), (0,1,0), and (0,0,1). We use instead a startinuum limit with a given coarseness of lattice. To eliminate
dard improvement, which approaches the continuum Laplacerrors at a given order i, one must not only improve the
ian faster for smooth fields form of the Laplacian but must also perform an appropriate
calculation of the relationship between lattice and continuum
parameters. To this end, we will rewrite our bare lattice ac-

2 — -2 _1 4 iy_5
Vie(x)=a 2,: [=12®(x+2ai) +5P(x+ai) =3 P(X) tion in terms of continuum fieldg and parameters (u) as

+3d(x—ai)— 5P (x—2ai)]. (2.3 z
: 2 £=a°Y | 3 (= 1 Viahr— b2V o)
The difference can be seen from the Fourier transforms of
the operator&’{, andVZ, which are Z,(r+6r) u+édu
T (B )+ (BT D)),

”kgza*ZZi [2—2 cogak)], (2.4) (2.12)
where the renormalizationg,, Z,, ¢ér, and éu will only
T2_ -2 5 8 1 depend orua at the order of interest. We explain their deri-
k?=a Z 5~ zoodak)+ ccog2ak) |, (25

vation in Appendix B. For continuumdefined byi\/I_S renor-
malization at a scalg, we find

and have smalk limits
B 2C, (ua)? 5
ka: K2+ O(a2k4), (2.6) Z¢=l+ T W‘FO((UE\) ), (2.133
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26 ua (48 2C4) (ua)®
(2.13b

2
Sr=a"? — g@4— E In_i+C3—32§) (u_a)z FIG. 1. The two fundamental UV-divergent graphs of con-
3 (4m) 9\ pa (4m) tinuum ¢* theory.
+0((ua)d)|, (2.130 Eqg.(2.19. This will be adequate to reduce the lattice-spacing
error toO(a?) on individual measurements Af ¢2)./u and
) 5 to O(a) on individual measurements of.
5u=a1[5—§ (ua) 32, +§2> (ua) L o(ua)h The precise definition of continuum and its relationship
3 (4m) 9 (4)° ' to bare latticer, are in principle unnecessary if one’s inter-

est is only to determind( ¢?).—one could simply find the
critical value ofr at any given lattice spacing and not worry

where we have introduced several more numerical constantgbout its relation to continuum definitions. However, as a
given by various integrals in lattice perturbation theory,Practical matter, knowing the relationship facilitates using
whose valuegfor the action with the improved Laplacign results at one lattice spacing to make a good initial guess of

(2.139

are approximately the critical value ofry at another lattice spacing. And, as
discussed earlier, the continuum critical valueras of in-
£=-0.083647 053040968, (2.143  terest in its own right.
Throughout this paper, continuunshould be understood
C;1=0.0550612, (2.14B  as defined byMS renormalization at a renormalization scale

;. That is, the continuum Lagrangian is tae>0 limit of the

C2=0.033416, (2149 (3 ¢)-dimensional action
Ca=—0.86147916. (2.149
1 1 u
One needs to similarly match the operatfsr whose expec- S=f d3 e §Z¢|V¢|2+§rbam¢2+ ,uf4—e!ﬁ(¢2)2},

tation is taken in determining\(#2). In Appendix B, we
discuss the relationship between the continuum and lattice
operators and show that the continuum result&ée?) is

A(¢?)=Z(¢?)ia— 6¢°+0(a%), (2.19

where the constani¢? is

(2.18

with the bare continuum parametgy,,. related to the renor-
malizedr =rys(un) by

2
Sp’=a ! %jL%%Jrg[crszcl—zcz rbare:r+(4;_-) E(g) ; (2.19
+2g22+§|n(;a)](u'—a)2g—gE . (2.16  and with
(4r) 4
The additional numerical constant is eVl
C,=~0.282. (2.17 AN (2.20

We note in passing that the logarithm in Eg.16) repre-
sents the explicit subtraction of an effect analogous[iqua-  [The factor ofe”e’?/\/47 in Eq. (2.20 is what distinguishes
dratic X logarithmic| correction to the critical temperature modified minimal subtractionMS) from unmodified mini-
for Bose condensation of dilute nonrelativistic gases, dismal subtraction (MS); the difference between the two
cussed in Ref.7]. In this analogy, the lattice spaciagn our  schemes amounts to nothing more than a multiplicative re-
simulation plays a role similar to the theLmaI wavelength ingefinition of the renormalization scale. The constant
the Bose condensation problem, andnd x (which is cho- =0.5772... is Euler's constan}. Three-dimensional$*
sen of ordew) are proportional to the scattering length. theory is super renormalizable and the only fundamental UV
In this paper, whenever we quote simulation results for alivergences of the continuum theory are those corresponding
given value ofua andra?, we are referring to simulations of to the two diagrams of Fig. 1. The first has a linear diver-
the action(2.12 with parameters given by Eq§2.13 and  gence, which is ignored by dimensional regularization. The
(2.15 with O(---) set to zero. When we quote values of second has a logarithmic divergence, which is the origin of
A{$?), we will be quoting continuum values, as given by the u?/e counter-term present in E¢2.19.
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C. Algorithm One method of estimating the location of the transition in
We evolve configurations in Monte Carlo time using a finite volume is to simply choose a fixed val@, of C

combination of site-by-site heatbath and multigi@] over-  P€tween one and two and then define the nommipai finite
relaxation updates. volume as the for which C(r)=C, . This leads to errors in

In Sec. IIl. we discuss how we define a nominal value off ¢ (contributing to errors in other quantities measured at the
the locationr . of the transition in finite volume. In order to transition that would scale away ds™in the largeL limit.
scan for the transition, we need to be able to smoothly wary ThisL™" scaling of finite-size errors is typical of many pre-
We use the standard technique of canonical reweightingScriptions for defining' in finite volume.

Having made a simulation at one valug,, of r, and accu- The method of Binder cumulants improves the scaling of
mulated a Monte Carlo time series of values of the finite-size error im¢ from L™t to L™7, wherew is
the critical exponent associated with corrections to scaling,
1 and
7= exs. @21
0=0.79 (3.4

expectations at nearby values r ;,,+ ér can be calculated

as . . .
for the universality class of the (@) model? One version of

1 _ the method is to measure the curve§) for two different
<exy{ - §V5r </>2)O> large system sizek; and L,, and then estimate. as the
(O),= pointr where the curves intersect. Specifically, Binfie}
r— 1 o
_ = 2
<exp{ 2V5r¢> )>r
L"-L® be-1 .,

(2.2 showed that, in thé.;,L,—o limit, the error scales as
We estimate our statistical errors for the estimates .of Fx(Ly,ba)—re~ Vi1 Yt _ 1 '
N ) ) ) : : c LXt—L 1—b¥t

and A(¢*). in a given simulation run using the jackknife 1 "2

method with 20 bins. The size of the bins must be large
compared to the decorrelation time, and this is verified in
Appendix A, where we quote decorrelation times and sampl&hereb=L,/L;. Moreover, the value of the cumula@t, at

Tsim

sim

(3.5

sizes for each of our simulations. the intersection approaches umiversal value C; in this
limit.®
lIl. FINDING THE CRITICAL POINT If one knewC, in advance, then, for data in a given finite

volume, a nice method for determining a nominal point of
Systems only have sharply defined phase transitions ifransition is to choose thesuch thatC(r)=C,. The finite-
infinite volume, but we use the method of Binder cumulantssize error inr, caused by this procedure also scales as
[9] to obtain a good estimate, in finite-volume simulations, of_ =¥~ This method is simpler and statistically a little
the critical valuer; of r. Specifically, we measure the cumu- cleaner than trying to find the intersection of tweXr)
lant curves for two different values df. This is the method we
_ shall use, but first we need a value Gf. BecauseC, is
Cc= (¢") (3.2) universal, its value can be measured from simulations of any
<$2>2 : model in the same universality class. We will use a value
determined by Campostrimt al. [13], who also simulate a
as a function of, where the two-component vectgris the ~ {Wo-component  lattice ¢ theory. They obtainedC
volume average o = 1.2430('1)(5),.W_here the two numpers in parenthes]s rep-
resent their statistical and systematic errors, respectively. In

— 1
o= Vf d®xd(X). (3.2
1The value of roughly 1.5 comes from the scaling relationship
In infinite volume, the cumulan€ is one in the ordered =(2—«)/d and the fact that the specific heat critical exponeits
phase and two in the disordered phase. In large volume, themgry small in this universality class. The best value ®fis
is a smooth transition between these two values, and the 0.01056(38) and comes from experiments in Earth orbit on su-
width of the transition region shrinks as the volume is in-Perfluid "He[10,11. (See in particular endnote 15 of Rgf1], and
creased. Specifically, for anx L x L volume, the width irr see also footnote 2 of Rdf13].) For comparison, theoretical values
of the transition region scales as in the L—c limit, ~ (Making use ofa=2-dv as necessajyare a=-0.0114),
wherey,=1/v and v is the correlation-length critical expo- _0'094(11)’ and_0'0146(8? from three-dimensioné8D) series
. techniqueg12], the e expansior{12], and Monte Carld13].

nent. The value of the exponent is ,
Values arew=0.789(11), 0.802(18), and 0.79(2) from 3D se-

yi=1/v=1.49 (3.3 ries technique$12], the e expansior{12], and Monte Carld14].
SFor a nice numerical demonstration of this universality, see the
for the universality class of the (@ model! Monte Carlo studies of Ising universality in R¢1L5].
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0.002 '\ t=r—r.is not, in fact, linearly related to the actual tempera-
! ua=6 ture of the system near the critical point, aaf{In Z)/d® is
L not directly the physical specific hettn any case, the ana-
0.001 '} « ity i
S large Lu it A+B(L" log of the “energy density”"E/V under this correspondence
, — " small Luexpansion (NLO) IS
3 \
A 0 2 E dilnz) 1d
T el . - - ~Sldloc( P2
<] \\\e e VOC th V dl’ln [D¢]e OC<¢ >' (41)
-0.001 ¢ = B whereV=L" is the system volume and=3 is the dimen-
T sion. The problem of understanding how the finite-volume
corrections to{ ¢?) scale withL may therefore be stated in
-0.002 : : this language as the problem of how corrections to the “en-
0 500 1000 1500

ergy density” scale withL for anything in this universality
class.

The standard finite-size scaling ansatz provided by renor-
malization group methods is that the free-energy derfsity
=—-V~lnZ scales a5

Lu

FIG. 2. Simulation results foA{ ¢2)./u vs lattice size in physi-
cal units Lu) for ua=6. The largeLu curve shown is a fit to the
rightmost four data points, with confidence level 61%.

the rest of this paper, when quoting results for the transition f(t,{u;},L 1) =fft,{u;})+b~ gy b¥t,{u;b¥},b/L)
in a given finite volume, we will mean the point where (4.2)
C(r)=1.243

(3.6 for periodic boundary conditions, whefg,y andf;,y gener-

ate the so-called regular and singular parts of the free energy
for that volume. As a check, we have also made a much Ies, ihe infinite volume limit(See Refs[17,1§ and references
accurate determination of. using our own simulations, herein) The lengthb is an arbitrary renormalization scale
which is discussed in Appendix D. We fi@=1.2402(7), ~ (plock sizg, and{u;} denotes the set of infrared-irrelevant
which we suspect has a systematic bias, discussed in thgyeratorgwith corresponding/;<0). Standard notation for
Appendix. The difference between these value€pis in-  itical exponents is'=1/y,, and we will denote the small-

significant for our purposes. We have checked that the dif'est|y-| associated with the irrelevant operatts} asw.
ference would only change our final results by a tiny fraction Ch]oosingb= L

of an error bar.
f(t,uj LY = fregt,uj) + L U gng LYtt,u; LY, 1).

IV. VOLUME DEPENDENCE OF A(¢?), 4.3

As discussed in the introduction, the only parameter of thelhe usual infinite-volume scaling form is obtained by taking
continuum problem at the critical point is. So the only L—0 with t fixed, which, for the limit to exist, requires
length scale of the problem isul/The relevant measure of
the sizeL of a finite-volume lattice relative to this scale is
thereforeLu (and similarly the relevant measure of lattice
spacing isua). Figure 2 shows a plot of our results for
A{¢?); on LXLXL lattices vsLu for ua=6. As can be
seen, our largedtu values are clearly large: the data clearly
shows nice convergence towards an infinite volume limit. To——
understand the size of the remaining finite-volume error, we
will want to fit the volume dependence at larg@ to an
appropriate scaling law.

fond 7.0, D)~7 Mt as 7o, (4.9
In contrast, for fixed, the free energy will be analytic i
since there are no phase transitions in finite volume. We can
make a Taylor expansion of the finite-volume free energy

4A uniform, nonrelativistic Bose gas is a constrained system: the
particle densityn is fixed. This constraint causes a different rela-
tionship of model parameters and the physical temperature than for
unconstrained systeni&6]. For example, the critical exponemnts
=(a,B,7,v) of the actual system are related to the standard expo-

The scaling of largel corrections depends on universal nentsx=(a,,y,v) of the field theory by(i) @= — a/(1- ), and
critical exponents of the @) model, which is in the same %=x/(1-«) for the others, ifa>0, or (i) x=x if «a<0. This
universality class as the classidd=2 Heisenberg ferro- relation explains the difference between mean-field theory expo-
magnet. The language of critical exponents in th€)O nents for the @) model (e.g., «=1/2) and the exponents of a
model is borrowed from correspondence with the Heisenbergoninteracting Bose gag.g.,a= —1).

magnet, and=r —r . is referred to as the reduced “tempera- Swe have not included a “magnetic fieldi coupling to ¢, with
ture” in this context,Cocd®(In 2)/dt* as the “specific heat,” a corresponding argumebtth in fsing, because we will only be
and so forth. It is important to emphasize that this languagénterested in the cade=0 and are not interested in correlations of
holds the potential for confusion because, in many applicag (as opposed te?), which could be generated by derivatives with
tions (such as Bose-Einstein condensation at fixed density respect toh.

A. Large volume scaling of A{ ¢%),
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(4.3 in t (as well as{u;L"i}), which should be a useful (p?)=A+ BL 92+ L9 ¢(ClnL+D)+---.
expansion when the arguments of the scaling piegg are (4.11
small. That is, for situations where’tt—0 as we takeL
—oo, we can Taylor expand E@4.3) as It is useful to verify the presence of a logarithm. If it were
not there, we could include the first corrections to scaling in
f=(Ag+BoL 9+ CoL 9"+ .. ) +t(A;+B,L 9N largelL fits of our data using a three-parametef A ,A,,D]

Cdivi—o 2 Cd+2 rather than a four-parameter fif\,, B,, C, D; or equiva-
FCLTTITE ) (At Byl T ) lently A, By, A}, C in Eq. (4.9].
. (4.5 The existence of the logarithm may be directly related to
the well-known logarithmic divergence of specific heat with
where we have only displayed the leading corrections due to when «=0. We give a renormalization group analysis in
irrelevant operators. Differentiating with respectttto get  Appendix C that makes this explicit. Here, let us just note
the energy density, we find thé&#?) scales in large volume that the logarithm follows from an old proposal by Privman
as and Rudnick19]. Ignore corrections to scaling for the mo-
ment, and suppose thatat=0 the free energy had the gen-
eral form(4.3) discussed earlier

+..

<¢2>:(A1+ BlL*d+yt+ C1L7d+yt""+ S
—d+2y, L. o
+ 2t(Ay+ Byl )+ (4.6) f(t’L_l)’”freg(t)+L_dfsithLdlz). 4.12

As mentioned earlier, use of the method of Binder cumu- q | ithmic di i of th
lants to determine, means that, in our application, In order to get a logarithmic divergence tnf) of the spe-
cific heat in the infinite-volume limit, we need a term

t~L Vo (4.7 t2n(t™Y) in the free energy in that limit. So we must have
This indeed satisfies the conditiett—0 asL—o, and so fsing n~A7”In(r"l) as 1o, (4.13
the expansior(4.6) is appropriate. For our application, we
then have But this would givef ~ f t) + At2In(t"*L~9%), which does
not have a goodl — < limit. The solution is to suppose that
(p?)=A;+B L IV AL Ve CiL 9o the =0 version of the free energy is instead
(4.8

-1\ __ 2 d/2 —df . d/2
Using the standard scaling relatiar+= 2 — vd for the specific FELTD~ Tre )+ AFINCLTE) + L aing L )'(4_14)
heat scaling exponeni, this may be rewritten in the form
which is what Privman and Rudnick proposed. Note that the
(%) =As+B LM AL Ve term is analytic as— 0 for L fixed, as it must be. The term
n CiL‘(l‘“)Vt‘“’Jr o 4.9 gives at In I: cc_ngtrib_ution to the energy d_ensit:‘y/V, which,
for thet~L Yt~ “ of interest to us, gives rise to the logarithm

The value ofa in the three-dimensional @) model is very ~ t€rm in Eq.(4.11).
small: @=—0.013, corresponding to the valug=1.49
guoted earlief10-12,14. C. How large is large volume?

The renormalizationZ, and5¢? that convery ¢?)y, into Before proceeding to numerical fits of the large-volume
A(4?) in Eq.(2.15 do not introduce any d|fferent2pqwers of dependence, it is useful to first have an idea of how large
L, and so the form of the large-expansion of\(¢°) is the  should be before one might reasonably hope for large-
same as that fof¢) in Eq. (4.9 above, though the coeffi- yolume scaling to hold. From Fig. 2, we see that the finite-

cients are different. volume corrections to the continuum value &f¢?). be-
_ come 100% where the data crosses zero, at roughly
B. Large-volume scaling fora=0 ~200. So, one might guess that this is very roughly the scale

many decades ih, « is zero for all practical purposes. And distance perturbative physics from long-distance critical-
so one might as well use the=0 limit of the large-volume scaling physics. We can check this rough assessment from

scaling (4.9, which corresponds ty,=d/2. Typically, «  the other side. In the limit of smallu, the physics of fluc-
=0 generates logarithms in a renormalization group analytuations is perturbative, and one may analytically compute

sis, which can appear as a superposition the expected valug ak( p?). o_rder by order_in powers of
Lu. We perform this computation in Appendix E in the con-
. gFfda_g? tinuum (ua=0) to next-to-leading ordeiNLO) in Lu, with
“moT =qgsins (410 the result that
of power lawss?*9¢ and s? for some variable of interest A<¢2>C: 6.440 03_ 0.451 570+ O((Lu)~*?)
One might therefore expect that the—0 limit of the large- u (Lu)®? Lu
volume scaling4.9) is (4.19
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0.3 = ; ; T -0.0005 7
i '
[ Oua=6 : ©d
i o ua=3 5 o a+bl™®
02l 2ua - .
Lo —-—- small Lu expansion (NLO) !
i - gmall Lu expansion (LO) |
3 - | @
Q_ 01 | \ i -0.001 ¢ E %
v - v .
< \$ : 2 NA
0 TSR e s e En o — o]
©® @? 2 61 33 NA
-0.0015 ) -
-0.1 - - - - . — 0 500 1000
0 50 100 150 200 smallest Lu used for fit

FIG. 5. Extrapolations of theta=6 data of Fig. 2 toL—o

. under various assumptions of the functional form. The horizontal
more small volume data than Fig. 2. The dot-dash curve shows thgxis shows the smallest value bfi of the data used for the fit.

next-to-leadln_g-order Sm&"”” expansion of Eq(4.15. Thg dotted Percentage confidence levels are written next to each extrapolation
curve shows just the leading-order term of that expansion. whenever non-negligible=1%), and “NA” (not applicable re-

. ) fers to those cases where the number of data points used for the fit
for our critical value(3.6) of the Binder cumulant. The re-  gquals the number of parameters.
sulting curve is shown in both Figs. 2 and& well as the
leading-order smalLu result in Fig. 3. One can see that the )
small Lu expansion becomes unreliable pasti~200, The_ propagato(4.16) changes from its large mome_ntum be-
which is the same as the previous scale estimdteere is havior (— constantto its small momentum behavior<p)
obviously nothing precise about this statement. The scale &t @ scale given by Blu~X(p). This corresponds t@

which the second term in the smalli expansion becomes ~Nu/48 and so distance scales of ordér~2z/p
50% of the first term, for example, Isu~50.) ~96m/Nu. Setting N=2, we find Lu~487~150. Of

Interestingly, the scald.u~200 is close to what one course, one would never hope that an estimation this crude
might estimate on the back of an envelope from a laige- would be useful beyond, at best, the factor of two level.
approximation to the theory. In largd, one replaces the Our discussion of system size has implications for the
0O(2) theory studied here by an @f theory ofN scalar fields  validity of an early numerical study of the critical tempera-
and solves the theory in the approximation tNas large—a  ture for Bose-Einstein condensation for nonrelativistic gases
program pursued for the problem of Bose-Einstein condenf22]. We discuss this in Appendix F.
sation of a nonrelativistic gas in Refg20,21. In the N
—oo limit, one introduces an auxiliary field whose propa-
gator represents a geometric sum of bubble diagrams, such as  v. NUMERICAL EXTRAPOLATION OF Lu—®
that shown in Fig. 4. The corresponding resummed propaga-
tor is proportional to

FIG. 3. Simulation results fok($2)./u vs lattice size, showing

A. Extrapolating A{¢?).to Lu— o
We now examine fits of thea=6 data of Fig. 2 to the

1 largeL scaling form of Eq(4.11). The circles in Fig. 5 show
53 (4.16  the result of extrapolating th— using the leading-order
—+3.(p) scaling corrections in Eq4.1)—that is, ignoring the sub-
Nu leading terms, which involve the exponant For compari-

son, the diamonds show what happens if we ignore finite-
whereS o(p) represents the basic massless bubble integral size effects altogether; the corresponding confidence levels
are terrible. The vertical dashed line in the figure marks the
moderate system siize=200 (discussed in the previous sec-
~ 1 1 1 . . .
Eo(p)z—f—:—. (4.17)  tion), below which you should become suspicious of any
2)i12)1+p2 18p| attempt to fit the data to a large-volume scaling form.
A simple method for assigning a final result for the ex-
>_ . _< _ >< + >O< + >OO< trapolation is to take our best fit with a correct scaling form.
- As seen in Fig. 5, the leading-order scaling forfa
+BL 92 s perfectly adequate for fitting our lardes data.
Our procedure is to fit the data for lattice sizes greater than or
+ >OOO< + o equal to a giverL,,, decreasing this minimum size for as
long as the fit remains stable with a reasonable confidence
FIG. 4. Bubble chains, which are the source of scale dependendevel. We take as our estimate the 61% confidence level fit to
in largeN calculations ofA{ ¢?). in O(N) theory[20,21]. Lu= 384, which gives
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0.0005 . | : 0.0005
i o a+bl™® | 0 arbl™+cl7(InL+d)
0.0004 1 i 0.0004 1 A arbl Brol 50
0.0003 | © ! 2 4 3  NA 0.0003 | oy
e = | .
' ® ® ﬁﬂﬁf £
0.0002 + © 0.0002 | o § * )
i 63136 30
0.0001 T i 1 0.0001 | %4 NA
0r ol ;
! ! ©=0.79
-0.0001 ’ : : -0.0001 1 : :
0 500 1000 0 500 1000
smallest Lu used for fit

smallest Lu used for fit
FIG. 7. As Fig. 6 but showing extrapolations that include cor-

FIG. 6. As Fig. 5, but shows the magnitude of the finite-size
correction toA{¢?)./u at Lu=576, as determined by the fit. rections to scaling. Where two confidence levels are listed on top of
each other, the upper one is for the square data point and the lower,

for the triangular data point.

A 2
%% =-0.0012899), (5.9
ua=6 Figure 8 shows, foua=6, the dependence on system
which is depicted by the shaded region of Fig. 5. size of our finite-volume determinations of(u/3)/u?. As
As described in Ref.1], we will actually use_Lu=576 as discussed in Sec. lll, the finite-size corrections are expected

a reference point from which to derive finite volume andto scale ad.™¥"“ asL—cc. Figure 9 shows the result of
finite lattice-spacing corrections. Figure 6 is similar to Fig. 5€xtrapolating an infinite-volume result by fitting various sub-
but shows the size of the finite-size correction.at=576, as  Sets of the data t&+BL~(¥?~. Taking the highest confi-
determined by the fit. The best fihe 61% confidence level dence level fit,

one gives (/)
C
Al B2 Al B2 [ 5 =0.00288286). (5.3
A{¢)e A0 6000 247), U™ Jua=e
u Lu=576 u Lu—oo (5
' Figure 10 shows the size of the finite-volume error at our

and we will use this difference, rather than the li&itl), in canonicalLu=576, as determined by the fits,
what follows. [The difference is determined by the coeffi-
cientB of our fit to A+ BL~%2, and so is determined by all

{ ro(u/3) r(u/3)

2

= —0.000 006 0426).
Lu=o
(5.9

the data points of that fit; it is not simply outLg,ua)
=(576,6) data point minus the lim{6.1), which would pro-
duce a larger errof As we shall seeya=6 is a reasonably
small value ofua, and we expect this to be a good estimate
to the finite-volume corrections in the continuuma— 0) 0.0029

2 u

Lu=576 {

limit.
As a check that corrections to scaling will not radically ;
alter our results, we show as squares in Fig. 7 the result of o
fits to Eq.(4.11). The values are consistent with the previous P
. o 0.00285 |
result, with larger errors because we are fitting more param- |
eters. The triangles show a simplified fit, with one less pa- i
rameter, that ignores the logarithmic dependence.

70

0.0028

B. Extrapolating r.to Lu—

We will now make a similar analysis of finite-size effects
for the critical valuer. of r. The continuum value of is | . ‘
convention dependent—it depends on one’s choice of renor- 0.00275 § 500 1000 1500
malization scheme and renormalization scale. As discussed Lu
earlier, our convention will be to defimewith MS regular-
ization at the renormalization scale=u/3. The conversion
formula(1.6) to other choices oft can be extracted from Eq. of system size. The fit shown by the dashed line is the large-volume
(2.130 and the fact that the theory is super-renormalizable fit to all but the leftmost data point.

ua=6

];é
i
§
,.':

<!
[

FIG. 8. ua=6 data for the nominal value of./u? (defined in
MS renormalization at renormalization scale=u/3) as a function
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0.002885 ; ; 0.0035
} . < no O(a) correction
: 0.003 | o O(a) results
; E E —-—-- linear fit (3 points)
E ———- quadratic fit (6 points) s
$20 81 72 59 0.0025 ¢ T
= NA = e
0.00288 | : ] 0.002 | &
I ‘ ,e'/’/ B
() : @/,/
: 0.0015 e
| //,@,@
ua=6 0.001 —‘:;"4%ﬁ‘%“ﬂ“ﬁ*——-gu“——%__
0.002875 : : ‘
0 200 400 600 800 0.0005 :
Lu (min) 0 2 4 6 8 10 12

ua

FIG. 9. Extrapolations of theta=6 data of Fig. 8 toL—o
using the functional forrA+BL Y™ “, The horizontal axis shows
the smallest value ofu of the data used for the fit. Confidence
levels are written as described for Fig. 5.

FIG. 11. The squares show results fo¢¢$?)./u vs ua at Lu
=144. The line through them is a fit of the first six pointsAo
+B(ua)?. The diamonds represent the corresponding uncorrected
data, as described in the text. To guide the eye, a straight line has
been fit through the first three points, though the actual small

VI. NUMERICAL EXTRAPOLATION OF ua—0 behavior is lineax logarithmic.
A. Extrapolating A{¢?). to ua—0
. . : . AD?, 1 S
We will now discuss numerical results for the continuum = (P — (6.1)
limit a— 0 while holding the physical volume of the lattice Uo Uo 27a

fixed. This can be expressed aa—0 holding Lu fixed.

Since the numberl(/a)® of lattice sites we can practically VS Uga, whered andu, are the bare lattice fields and cou-
include in a simulation is limited, we may obviously explore pling of Eq.(2.1). This uncorrected data is represented by the
smaller values ofia when we fix smaller values dfu. Asa  giamonds in Fig. 11. One clearly sees Béa) corrections.
test that we understand our lattice-spacing errors, we hav/e should make clear that this is still= 144 data and is
therefore made several simulations at the rather moderajg,; Luo=144 data, which would have required additional
system size ol u=144 (see the discussion of Sec. IM.C  gimulations.
The results for the dependence A %) /u on ua are Figure 12 shows thaa dependence at a reasonably large
shown by the squares in Fig. 11. If our corrections@@)  physical system size dfu=576. We show extrapolations of
errors have been calculated correctly, the remaining errofe ya— o limit in Fig. 13. Here, the 10% confidence levels
should .beol(az). Indeed, all but the largest twoa data o fits 1o A+B(ua)? are less spectacular than the= 144
points N Fig. 11 fit very well the functional formA  4ata though not unreasonable. Because of the lower confi-
+B(ua)®, with a confidence level of 94%. dence levels, we have been a little more conservative in our
It is interesting to compare to what would have been ob o estimate. We take as our result for the—0 limit the
tained if we had used the same data but instead plotted thg,54eq region of Fig. 13, which has been chosen to cover

uncorrected both the 10—15% confidence level fits:
| ' ' ~0.0009
: ua=6 N_A_
0r L__
~0.001 F g
| 59 E
osxi0® | =20 872 | N
— E -0.0011 | LN
1 \\\
o O(a) result \\\E
; ol —=-- quadratic fit (4 points}
-1.0x10° ; : : _ . ‘ . A .
0 200 400 600 800 00y T s 8 10 12
Lu (min) ua

FIG. 10. As Fig. 9, but showing the magnitude of the finite-size ~ FIG. 12. Results foA{¢?)./u vsua at Lu=576. The line is a
correction tor¢/u? at Lu=576. fit of A+B(ua)? to all but the rightmost data point.
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-0.00092 ; ; ‘ . 0.00193
Lu=576 Lu=576
-0.00094 | NA 11 14 3 T
3
% S 0.00192 |
-0.00096 % 3 I
s % {
[ 4
S
-0.00098 + < o0.00191 |
& NA 58 8 10
x
-0.001 + @
0.0019
-0.00102 ‘ - ‘ - 0 5 10
0 2 4 6 8 10 ua (max)
ua (max)

FIG. 15. Linear extrapolations of thau=576 data of Fig. 14 to
FIG. 13. Extrapolations of the data of Fig. 12ua= 0 fitting to ua=0. The horizontal axis shows the maximum valueuaf used
the form A+B(ua)?. The horizontal axis shows the maximum for each fit. Confidence levels are written as described for Fig. 5.
value ofua used for each fit. Confidence levels are written as de-
scribed for Fig. 5.

ro(u/3)
u2
=—0.00095715). (6.2 Lu=576

=0.001914 121), 6.3

A(¢%)c

u2

] Lu=576
as shown by the shaded region of the figure. Combining with
our estimate(5.4) of the finite-size error aLu=576 gives
our final result(1.5) for the infinite-volume continuum limit.
Again, the dominant error comes from tha—0 extrapola-
tion.

Combining this with the finite-volume correctidb.2), and
adding errors in quadrature, we arrive at our final vdllid)
for the infinite-volume continuum limit. Note that the domi-
nant error in this estimate comes from tha— 0 extrapola-
tion.

B. Extrapolating r. to ua—0 C. Interdependence ofLu— o« and ua—0 extrapolations

The circles in Fig. 14 show the dependence obnua at In this paper, we have treated the extrapolation of our
the medium system size &fu= 144, where we may simulate finite-volume correction, taken froma=6 data, as indepen-
down to relatively small values afa. The data fits wellto a dent from our continuum extrapolation, taken frobru
linear dependence ama, with the fit shown to the first six =576 data. Consider the casedf$?)./u. In principle, the
points in the figure having a 38% confidence level. The tri-two extrapolations are not completely independent because
angles in the same figure show similar dependence for ththe coefficient in the formA+BL~ %2 used for our largé
reasonably large system sizelai=576. The corresponding extrapolation is not universal. Its value will have some de-
extrapolations taia=0 based on linear fits are shown in Fig. pendence oma. For our procedure, we would like to know
15. We take thaia=0 extrapolation to be the value oB atua=0, to obtain the largé correction(5.2)

atua=0. Instead, we have the largecorrection atua=6,
0.004 - ‘ which will be slightly different. In numerical terms, we will
' have underestimated our systematic erroB[iia=6] dif-
fers from B[ua=0] by ~7%, which is the final error on
A{¢?)¢/u quoted in Eq.(1.4) relative to the size of the
finite-volume correction(5.2).

How does the coefficienB depend onua as ua—0?
Because of our improvements to the action and to the opera-
] tor ¢2, the answer is that smalla corrections tdB vanish as
v Lu=576 (ua)®. To see this, note that the only quantities we have
O Lu=144 ) matched througl®[ (ua)?] arer and 5¢>. However, neither
of these contribute t®. ¢ is a constant and therefoteau
independent, and our procedure tunes to the critical value of

0.0015 0 5 10 15 (the continuum parameter whether or not the lattice pa-
ua (max) rameter is correctly matched to the continuum one. The re-
sidual difference between lattice and continuurdoes ap-

FIG. 14. Results for./u? vs ua at Lu=144 andLu=576  pear in Eq.(2.16), but, because—r vanishes as ~“~ 92,
(defined inMS renormalization at renormalization scate=u/3).  this does not contribute t8 either. We should not expect
The lines are linear fits. such a high-order correction to be of any consequence.

0.0035

0.003 |

0.0025

0.002 |-
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There is an alternate way of fitting our data that makes it Our nominal decorrelation time is the largest integrated
easier to check this. We can fit all data at ladige and  decorrelation time of the various expectations required in the
relatively smallua to a form that allows both spacing and computation of the Binder cumulant and @b?). These in-

volume dependence, clude the integrated decorrelation times associated with mea-
) surements oP, P¢?, P¢?, andP¢* (and also times asso-
A(9%)c B 2 i i |
=A+B(Lu) Yt+C(ua)Z (6.4  ciated with cross correlations between thesenere
u
I

_ _ _ _ Pzexp( - =Veér ¢2) (A1)

Based on our fits at fixedu and fixedua, we expect this 2

form is sufficient if we use only data withu=384 andua . . S .
<8. Fitting all such data givea(¢2)./u=—0.001 194 (8) is the canonical reweighting factor, as in EQ.22. We

with  y?/(degrees of freedomy15.3/8 (5% confidence found in all cases that the longest decorrelation time was that

level). The result is consistent with our quoted result, and hagssociated wnh_bz_ The integrated decorrelation time for a
smaller errors. The quality of the fit is not very good, which Single operator is given by

is why we quote the larger error bars of our other analysis. w0

However, adding a term that allovsto vary withua (that =+ E @ (A2)

is, aua andLu dependent terindoes not improve the qual- =1 C(0)

ity of the fit. Adding the ternrD(Lu) Yt((ua)™ and doing a

four parameter fit changeg® by less than 1 fom=2 orm  Where

=3; so the data show no evidence that such a term is large N—n

N 2
. 1 1
enough to be important. C(n)= > 00.,~|=> 0, (A3
(N=n) =1 N =1

We do not understand why the fit to all data has such a
large x? [ x?/ (degrees of freedom) 15.3/8]. The three low-
est ua data points are the main outliers; the twa=3 is the autocorrelation function associated with the desired
points are each at® However, the (u,ua)=(384,3) point operatorO. In practice, the sum in E§A2) must be cut off
is off in the opposite direction as th&,ua)=(576,3) and because of degrading statistics, and we cut it off when
(Lu,ua)=(384,4) points, so there is no systematic trend inC(n)/C(0) first drops below 0.05.
the residuals and we have no reason to believe that some
additional lattice-spacing or volume-dependent term is miss-APPENDIX B: MATCHING CONTINUUM AND LATTICE
ing in our fitting procedure. THEORIES

Finally, there is a minor, independent issue in our main
analysis. The statistical part of our errors in our original in-
finite volume and continuum extrapolations are correlated, In this appendix, we discuss th@(a) and O(a?) im-
since both of these extrapolations included theau,la) provement of three-dimensional scalar field theory on the
=(576,6) data point. However, since the error from the condattice. For the sake of generality, and because it is not any
tinuum extrapolation dominated that from the infinite- harder, we will discuss Q) scalar field theory olN real
volume extrapolation, any statistical cross correlation befields ¢=(¢41,d,, ...,¢pN). The case of interest to the
tween those errors will not have a significant effect. present paper iBl=2. As in Eq.(2.12), the lattice Lagrang-

ian is defined to be

1. General discussion
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where
APPENDIX A: TABULATED DATA ) N )
= 2. B2
To give a rough idea of the size of our data sets, we have ¢ .21 i (B2)

listed in Tabé | a nominal decorrelation time for each

simulation, along with the amount of data we have in units ofand ¢, r, andu are just the(UV renormalized continuum

27. In our conventionr=0.5 represents completely uncor- fields and parameters in lattice units. Spg=a"beon,
related data. Our decorrelation times are in units of sweepsia=aUcont, ANAT = a2r cone. OF theser o is the only con-
where one “sweep” consists of both a heatbath sweep and Bhnuum parameter that requires UV renormalization and
multi-grid update. More than one time is shown in casesshould be understood as renormalized with dimensional
where simulations were made at different values @fefore  regularization and th#1S scheme. In this appendix, we will
reweighting. calculate, to a given order in lattice spacing, the necessary
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TABLE I. All analysis data, including nominal decorrelation time

Lu ua La A{¢p?)lu re/u? Tdecorr Nsweeph2™
8 1 8 0.232%8) —0.02992(98) 0.6 16868
24 1 24 0.040(®8) —0.00207(37) 0.5 1070
24 3 8 0.042@1) —0.00249(26) 0.5 11470
36 3 12 0.0216¢6) 0.0002713) 0.5 38070
48 3 16 0.01232®5) 0.00123312) 0.6 231566
72 3 24 0.00574.5) 0.00190625) 0.7 9993
96 3 32 0.00321®B5) 0.002103679) 0.8 26406
96 6 16 0.003083B6) 0.002598112) 0.8 1235650
144 2.25 64 0.0010328) 0.00215424) 1.3 205420
144 3 48 0.00102598) 0.002278816) 1.4 158458
144 3.6 40 0.00102%83) 0.0023747709) 1.1 373163
144 45 32 0.00102697) 0.002519913) 1.2 370142
144 6 24 0.00100834) 0.0027592%62) 1.1 940826
144 7.2 20 0.00099400) 0.0029508870) 1.0 863928
144 9 16 0.00092223) 0.00323454698) 1.1 1213680
144 12 12 0.000925%83) 0.003721081) 0.7 1844310
192 6 32 0.000111898) 0.002815114) 1.7 192227
288 3 96 —0.0004299(90) 0.0023641B) 5.7 21604
288 6 48 —0.0005625(76) 0.00285810) 3.4 50516
384 3 128 —0.0007484(57) 0.0023836x) 3.7/5.7 69038
384 4 96 —0.000799(11) 0.00254985) 7.4 12316
384 4.8 80 —0.0008055(80) 0.002676D4) 6.3 18797
384 6 64 —0.0008455(71) 0.002868M0) 5.7 14591
384 8 48 —0.0009131(78) 0.003187B2) 3.7 20958
384 12 32 —0.01217(18) 0.003835%89) 3.6 6021
576 3 192 —0.000992(11) 0.0023956) 17.5/8.5 4458
576 4.5 128 —0.0009993(64) 0.002635280) 125 12212
576 6 96 —0.0010470(83) 0.002876111) 7.4/7.9 7196
576 7.2 80 —0.0010968(68) 0.0030684%7) 10.8/6.2 13493
576 9 64 —0.0011398(80) 0.003352H1) 10.5 4007
768 6 128 —0.001142(11) 0.002880R3) 14.3/13.1 3074
1152 6 192 —0.0011999(86) 0.0028818D) 7.4/18.5/10.1 6342

counter-term& ,, Z,, 6r, andéu required to implement this  nitions of the operatorp? to the same order, so that the
correspondence between continuum and lattice variables. Timeasurements ok ($?). will match up. Actually, the first
match the lattice and continuum theories to high ordem in  requirement is slightly overstated. To measurég?), to

we would need to include other operators in our latticeQ(a), it is not necessary to match the lattice and continuum

theory, such a®®, ¢?|V¢|?, and so forth. However, these parameters to that order. That is because, in the simula-

Work.. ) ) i until we find the transition—we do not need to know its
A given local lattice action will never perfectly reproduce |q|ation tor .to do this
; . f : con .
the_ continuum action. For_ smalk, the_error in how a given In this appendix, we will match, to the lattice just to
lattice action treats physics at the distance _seateay be. 0O(aY%. This will make possible a determination of the con-
computed and compensated for by perturbative calculatlon%.nuum value of the critical value,, but O(a) errors will
c»

The discrepancy in how a given lattice action, with given . q t b d b ; lation to th
parameters, treats the nonperturbative physics at the distanggain and must be removed by extrapolation 1o the con-
tinuum limit. We will match the continuum and lattice defi-

scale 14 cannot. It is therefore important that the lattice ™ 5
action be close enough to the continuum action that errors 4itions of the operators” through O(a),2 so that we can
the scale 1 are higher order im than whatever is desired. Make anO(a) improved calculation of ¢%).. We will also

In order to improve our simulations and measurement offatch the lattice action througtd(a?) [except for the
A{¢?), to O(a) accuracy, it is necessary ta) match the ~matching ofr just discussel rather than simplyO(a), be-
lattice action and parameters so that, at the scaleiltte- ~ cause it is not that difficulicompared to th&©(a) matching
produces the physics of the continuum action up to and inof ¢?] and should improve thea dependence of infinite-
cluding O(a); and(b) match the lattice and continuum defi- volume extrapolations of our data, as discussed in Sec. VI C.
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FIG. 16. The one-loop graphs needed for the renormalization. A Fl?' 17. A diagram contributing to the mixing of th? and ¢
cross represents@? insertion, which in turn could represent either operators.

(i) a perturbative insertion of thep? term of the action ofii) the ) o

dimensional analysis. But, also by dimensional analysis, the

At tree level, the infrared behavior of the lattice and con-fenormalized continuum expectati¢g?) is O(u?). So, the
tinuum theories are the same up to corrections suppressed By(#*)cone term contributesO(u‘a®) to the expectation,
at leasta?; the power ofa may be higher if we choose the down by three powers afa from c,($?) con. Our goal will
lattice V2 appropriately. However, there are “radiative” cor- be to compute th©(a) corrections taA($?)., for which it
rections induced in the infraredR) physics by the nonlin- is therefore adequate to compute jogtandc, above.
earity of the theory, together with the UV difference between The diagrams that contribute ty are the same as those
the lattice and continuum theories. The diagrams of Fig. 16that contribute to the multiplicative renormalization of the
for instance, differ on the lattice from their continuum valuescoefficientr of ¢ in the action, and &4 is the same as the
because the dispersion relations of the scalar fields differ i, introduced previously. Rearranging the terms in &8),
the UV, and the loop momentum integration integrates ovekve will write
this region. These effects are suppressed by powers of the
couplings; the radiative correction to the scalar four-point a($?) con=Zi (%) a— 66>+ O((ua)?), (B4)
function, for instance, clearly depends aR. On dimen-
sional grounds, the difference between lattice and continuurwhere 64?2 represents a@-number @c,/c,) parametrizing
values of this diagram must go aga, so these diagrams mixing with the unit operator, which we shall calculate.
lead toO(a) differences between the lattice and continuum We will see later that, for the purpose of calculating the
theories. The difference between lattice and continuum val©(a) corrections toA{¢?)., all that is strictly required is
ues of these diagrams may be removed by a renormalizatiomne-loop results foiZ,,, Z,, éu, and ér, and three-loop
of the parameters of the lattice theory. results foré¢?. To determing . [just atO(a®)] requires tree

As discussed in the main text, we will be interested notresults forZ,, su, andZ,, and two-loop results fobr. If
only in how to renormalize the parameters of the action bubne made a three-loop computation &f (which we have
also in how to translate expectation values of the operator not), one could obtain th®(a) corrections for; as well. To
between the lattice and continuum. It will be convenient tomatch the action througb(a?), except forr, one wants a
talk directly about the operatap?, which is associated with two-loop determination of ;, and su. As discussed in Sec.
UV divergences in the continuum, rather that$?), which VI C, it will also be useful to have a two-loop result i .
is not. We will define¢? in the continuum also usintylS Now we turn to the calculations. For the remainder of this
renormalization. In general, operators with the same symmeappendix, we will work exclusively in lattice unitaE&1).
try can mix under renormalization, and the lattice operator
¢? will correspond to some superposition of the unit con-
tinuum operator, the renormalizel? continuum operator, o ) ) .
and higher-dimensional renormalized continuum operators A one-loop renormalization calculation will determine the

2. One-loop results

such as¢*: O(a) contributions to the quantitie,, éu, andZ,, and
will find the O(1/a) contributions todm? and &($?). The
a ()= Co+ Co ) cont Ca( P contt - - --  (B3)  details of the power counting used here may be found in

[23]. In the small lattice-spacing limit, the momentum scale
However, our particular interest is in expectation values at ' associated with the parameteis small compared to the
the transition. For this application, the effects of higher-and-scale 14 where the lattice and continuum theories differ. So,
higher-dimensional operators on the right-hand side of Edfor the specific purpose of a calculation to match the lattice
(B3) become suppressed by more and more powensaof and continuum theories, threp? term in the actior(as well
For examplec, is O(1), and the expectation value of the as theu¢* term) may be treated perturbatively.
renormalized continuum operatap? is, by dimensional The required graphs are shown in Fig. 16. Evaluating the
analysis,O(u) at the transition. So, the,(¢$?)coniterm con-  graphs requires choosing a lattice Laplacian, and for com-
tributesO(u) to the expectation. In contrast, the lowest-orderpleteness we will consider both the unimproved &) and
diagram that contributes to mixing betweeit and ¢* is  improved Eq.(2.3) choices described in the main text. The
shown in Fig. 17 and gives,=0(u?a®), where theu?  evaluation of the one-loop graphs requires two integrals
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Here, we use the shorthand BZ to mdaries within the
Brillouin zone, meaning eack e[ — 7, 7]. The notatiork? >&<

t3) ™

cancel

is introduced in Eq(2.4). The integrals that determirgeare Q
each IR singular and some regulation is implied, for instance cancel

addingm? to bothk? andk? and taking the limit asn®— 0.

The numerical values of the integrals, accuratectb in the cancel Q CX) cancel

last digit, ar@

2,=3.17591153562522, 3,=2.752 383911 307 52, FIG. 18. All required two-loop graphs and one-loop graphs with

one-loop counterterm insertions, shown as heavy dots on lines

£,=0.152859 324966 101, £=—0.083647 053 040968. (mass countertermsr at verticedcoupling countertermsThe last

(B7) eight graphs cancel in pairs. Diagrar®, (d), and (e) are not

separately IR convergent; diagrai) must be distributed between

Note that the sign of depends on whether we use an im- the other two to produce IR convergent integrals.

proved lattice Laplacian. This is possible becagseepre-

sents the difference of a graph between lattice and continuugrals are needed, which we will evaluate in a moment. The

theories. The lattice contribution is larger inside the Brillouin complete two-loop result for generhllis

zone, but the continuum integral receives contributions from

outside the zone as well; the sign depends on which effect is S — SU— (N2+6N+20) £ 2
larger. a1 = oy = 36 41
At one loop, the renormalizations afi@ lattice unitg
_(5N+22) Gy ] 13
—Mi 2 (88) 9 (477)2 ,
U= 6 47Tu '
7, ,—1=N*2) Cz ., (B14)
Zyu—1=0, (B9) ¢.2 18 (4m)?
(N+2) & N+2\2[ ¢\% (N+2) C; |,
Zra—l=—F—7-u (B10) Zia=Zean=|\ ") |\ 2 "6 (am? us,
(B15)
5 (N+2) 3 61
ri=—— 71 (N+2)
6 4w 5r2|—5l’1|=m Cs+In i —-3%¢ u?, (B16)
3
2 _ —_
o1 =N —. (B12) , ., N(N+2) 3¢
8= 6bu="6 amzY (B17)

3. Two-loop results ) )
The three numerical constar@, C,, andC; are given for

For the renormalizationg,, andZ, , it makes no sense to the improved Laplacian in Eq2.14). Only C; can be use-
carry the renormalization to two loops unless we use théully defined for the unimproved cadewhere it is Csy
improved lattice Laplacian, because already at tree level, the-0.088 480 10.
unimproved Laplacian give®(a?) level errors in the propa- Now, we detail the calculation of the constan®;
gator. The two-loop results require several more graphs agirough C;. We will use the following shorthandsfy g7
well as the inclusion in one-loop graphs of one-loop massneans [dk/(27)3, with range the Brillouin zone
and coupling countertermgSee Fig. 18. Four more inte- [ — 7, 7]3; whereas/, ys is the same but integrated over all

3-space. Further, we define the following integrals, which
will come up repeatedly:
6An analytic result [6] for 3, is 8/m(18+12,2—103
—7V6)[K((2— V3)*(\3—2)))]?, where K(k)=F(3 k) is the

complete elliptic integral of the first kind. "In Ref. [24], this constant is called.
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gives — (&/47)?. No new integrals are required. It is a non-

L(p —f m— (B19) trivial check on the calculation that the sum of the coeffi-
a.BZg“(p+q) cients arising from diagran(s) and(e) precisely absorb dia-
gram (d).

1 1 The next integral is th€©(p?) contribution from the set-
I =f = . B19 ting sun diagramb),
C(p) q,\lﬁ3q2(p+q)2 8|p| ( ) g g n( )

C, i 1 f 1 1 LK)
. . _ : =1lm — V5 T =5
We begin with the two-loop vertex correction, gra#) am? ooop? | Jkez\ (ki p)? K2 L

of Fig. 18. The required integral, including the appropriate
amount of the one-loop counterterm grah, is

1
- P) o k)] . (B25)

J k,R3

c, 1 ¢ (k+p)?
= —— (k)= — —f — 1 (k).
(4)2 fk,BZ(kz)z[ L 477] kR Kk (k) The first trick is to note that
(B20)
1 1
We rearrange the original integral into three parts, fk’Bz (kT p)2 K2 =0, (B26)

f 1 [ 1 é } 1 1 1 just by shifting the integration variable for the first term. So,
(K=o — 7= +f vl s T 3 we may add an arbitrary constant tg(k) in Eq. (B25)
2 8k 4 8k\ (k3)2 K4 ' '
k.8Z (k%) m kB2 (k97 Kk and we choose the constanté/47. This will prevent IR
divergences in what follows. We are now free to expand

—f (is) . (B21) 1/(??5)2 to second order ip. After averaging over direc-
ki®-8Z | 8k tions for p, we find
All three of the above integrals are convergent, provided we 1 > 8 sink; —sin 2k; |
use the improved Laplacian. The first integral is IR well 1 1 3 < 3
behaved because the two counterterms can¢&) up to a T2—~—2—>p2 ~>3
k2 correction, which in the smak limit is 1, (k)—(1/8&)  (K¥P)* k (k%)
— (&l4m)—(0.012 543 8K?/4 . 1 4 cosk — cos k.

To get accurate numerical answers, we perform all 3D - (;
integrals by quadratures. Dealing with the double poles that _ 37 s —n2

g ; : : = =p“M(Kk).

appear in _is touchy, and requires adaptive mesh refinement (k?)?
techniques. We improve the precision of each final result by
repeating the full integration at several spacings and extrapo- (B27)

lating (Richardson extrapolation The first integral in Eq.
(B21) gives (0.0360003)/16°, and the second gives
(0.054 568 958)/162. The last integral, oveR®—BZ, may

The equivalent expression in the continuum casp?i8k*.
Rearranging the terms a little, we can write

be rearranged into C, 1 1 1
16m2 24 k,ua3—BzE+ fk Bz 8K ( M= Q)
: (B22)
 167° Y (14 xt+y2)52 f M(k)[ - o 4& } 829
which gives —(0.035507 296 027. - )/1672. These sum to
give C;=0.055 061 2. We have seen the first integral. The second gives
Besides this graph, there is gra, which gives (0.0310757695)/16° and the last gives (0.0142016)/

1672; s0 C,=0.0334416.
1 \2 1)2 Next, we must compute th®(p°) part of the setting-sun
f _ ) _<f _) , (B23) diagram. The continuum diagram is IR and UV logarithmi-
k82 (k?)2 k&3 k* cally divergent, while the lattice diagram is only IR logarith-
mically divergent. It is convenient to IR regulate both by
which is not IR convergent. However, including 2 times ~ introducing a mass on one line. In this case, the continuum
the counterterm diagraru), integral may be performed iMS, leaving a lattice integral
minus an analytically determined counterterf@4,25.
1 1 1 Choosing to separate the renormalization dependence along
_z(j ~_) (f ~__f _)1 (B24)  With the same finite constant as in the previous literature
k8z(k?)?) | JkBz(k?)?2 JKr3K* [24,25, the constanC; is given by
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Ca _, f 1 " 1 [1“6
=1m = - = Ttin—=|r.
(4m)2  moo| JuBzK2+m? " 1672[2 ~m ‘ Q é ‘
2 loop wave,
(829 “ © ®) ®
(A) (B)

The problem with this expression is the logarithm. To re-
move it, we add and subtratg(k) =1/8k to I (k). The in-

tegral
FIG. 19. Three-loop vacuum diagrams neededdgr at three
loops. There are seven additional diagrams either involving one
f = (k) - _} (B30) loop mass counterterms or tadpoles, which cancel among them-
k,BZ K2+ m? 8k selves.
is IR convergent, and the—0 limit may be taken immedi- Combining terms giveC;=—0.861479 16, unless we

ately. It evaluates to- (0.068584 32)/162, unless we use Use the unimproved lattice Laplacian, in which case it is
the unimproved lattice Laplacian, in which case it is C3y=0.088480 10.
(0.609 533 43)/162. We rearrange the remaining terms to be

4. Three-loop result for 6¢?

i+f ; In principle, one could extend all the renormalization
8K Jk.Bz8k(KZ+m?) counterterms we have considered to three-loop order. How-
ever, for many of them, this requires including mixing of
different dimensions of operator insertions and including
counterterms for radiatively induced high-dimension opera-
tors in the Lagrangian. However, the three-loop contribution
Again, for the first integral then—0 limit may be taken tO the additive countertg:rrﬁd)2 is an exception: it gives the
immediately, and the numerical value is (0.161799607)/C(&) corrections toA(¢%)., and we have already seen that
162, or (0.433 641 120 15)/ 16 if we use the unimproved W€ can ignore h|g]her-d|men5|onal operators at this order. The
Laplacian. For the last integral, we cut the integration regiorfalculation of6¢< is the least complicated of the three-loop
into the ball of radiusr and the region within the Brillouin ~ c@lculations we might envision, and does not require the re-

J’ 1 1
kBz\ K2+m? K2+m?

1 [1 6
(B31)

1672 2 m

2 nm'

zone but outside the ball: sult of any other three-loop calculations or any of the coun-
terterms that would be needed in a complete three-loop
1 1 (= Kadk matching. The relevant diagrams are given in Fig. 19. We
S [ — find
fk,BZBk(szrmz) 272 )0 8k(k?+m?)
5 ) N+2\2 (N+2)
03— 05 = 5 £+ 18 [C,—32C;—2C,
+J —————O(|k|—m).
k.Bz 8k(k?+m?) _IN? ¢

The first integral is easy and gives #i(n)/16m> plus  Here, the constart, arises from the basketball diagram of
terms power suppressed im. When added to {1/  Fig. 19, together with part of the mass-squared counterterm
167%)[In(6/m)+1/2], this cancels the Ing), leaving (1/  diagram. The explicit renormalization scale dependence in

1672)[In(7/6)— 1/2]. The final integral has had the smaill Eq. (B34) cancels the implicit dependencerof:r(;) in the
part of the integration range removed, so the:0 limitis |55t term.

trivial. It may then be reduced to Our definition ofC, is that[ C,+ & log(au))/(4m)° equals
the lattice value of the basketball diagrat) in Fig. 19,
1 (dQ R(cubg minus diagram(C) taking only the setting-sun part of the
1672) 4w : R(ball) two-loop mass counterterm. Explicitly,
1 12 (w4 arctan(sea) C,+€élog(am) f 1 f 1
_ 12 , - _ [l (p+k)—I
6.2 Wfo dd)fo sin(6)de In[sec )], 4m)? 52 (k)2 p,Bsz[ L(p+k) —1.(p)]
(B33 1
+J s lcP)
which numerically equals (0.192 335131 95)#6 Note PR

that at no point have we had to deal numerically with an 1 1
integral that is logarithmically divergent im, or that still _f _f Z1e(p+k). (B35)
containsm at all. kR k4 p,R3 p?
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Here,l (p+k) andl(p+k) arise from the basketball dia- This integration is finite and over a finite integration region
gram, whilel (p) andlc(p) are from the setting-sun piece (provided we make a prescription that the argument ofpthe
of the counterterm. Every term here is implicitly IR regu- integral is interpreted as the average opeand —p of the
lated by a common infinitesimal mass on every propagatorquantity written. The integration is nine dimensional and
but the way we will perform the integrations means that wecontains some delicate integrable singularities. We find it
will never need this regulation explicitly. Also, continuum convenient to use adaptive Monte Carlo integration rather

integrals are implicitly renormalized iMS, which will be
relevant.

than quadratures. Monte Carlo integration is somewhat prob-
lematical when there are integrable singularities. Rather than

It is convenient to add and subtract the appropriate factofinding clever changes of variables to get rid of such singu-

to put thel o(p+k) factor inside the BZ integral. We add
and subtract

[ -
kBz(k?)2 Jkrik*

The p integral may be evaluated MS (note that we do not

(B36)

1
f —lc(ptk).
p

312
REP

need its value in the deep IR where the implicit mass regu-

larization becomes importantand gives

1.5—log(k/ )

167 (B37)
T

1
Jp,R3EIC(p+k):

The constant terms may be pulled out of thentegrations;
the remainingk integral is Eq.(B6) and givesé/4nw. The
constant parts therefore yie[d..5+log(aw)]&/(647°). The
Ink leads to the integral

1 J —In(ak)_J —In(ak) ~0.30837
1672\ Jkez 82 Jerr k| 64
(B39)

for the improved Laplacian. EquatidiB35), after subtract-
ing Eq. (B36), becomes

[ 2ipene
k82 (k?)2 p,BzBZ["(p )=1(p)]

1
—J —Z[Ic(p+k)—lc(p)]). (B39
PR3P

It is convenient to split off the part of the continuum

larities, the simplest thing to do is to include a small mass in
all the propagatorsgthus, cutting off all singularities vary

that mass, and then numerically extrapolate the zero mass
limit from the results of the Monte Carlo integrations. Our
result for the integra(B41) is (0.0985-0.00§/(4)3. Com-
bining terms, we then have,=0.2817 (6) for the improved
Laplacian.

5. Minimalist expression for A{ ¢?). through O(a)

Some of the development in the preceding sections is un-
necessary for the isolated goal of getting@¢a) improve-
ment of A($?). It is possible to combine the previous results
in the more compact form

Né& N(N+2) ¢

2 _Zr 2 2
A >cont_Z_¢A<(I) att Y i e

—(477)3 auo
+0(ud), (B423
C=C,+£In6+£C5. (B42b)

Here,® is thebare lattice field, andug the bare lattice cou-
pling, corresponding to the bare lattice acti@l);

N
A(D?) = (D?) = 7— (B420)
r, stands for the tadpole-adjusted mass,
B (N+2) X 542
I’1=r0+ —6 u0_47Ta’ ( d)

which is O(u?) near the transition; ant, is the bare mass

integration that lies outside the Brillouin zone as a separatésed in the bare lattice actid@.1). We have retreated from

integration, which does not suffer from divergences,

1J 1 J’ 1 1 _0.00031757
8JkBz(k?)2Jpr3-Bz\ p°  p?lp+K| 64w

(B40)

This leaves as the final integral we must consider,

[N
k,BZ(‘RZ)Z 0.BZ 52[ L(p ) L(p)]

1
~ Slp+k—1dp)]. (B41)
p

lattice units and explicitly show all factors af SinceA({®?)
is O(u) near the transition, we only need the one-loop result

Z, 1_|_(N+2) &

Z_¢: 6 u47'r

(B42¢

forz,/Z,.

To finish the relationship between the measurement of
A{¢?)/u and the bare fields and parameters of the lattice
Lagrangian, we only need the one-loop relationship between
the continuum and bare lattice couplings

(N+8) uzai
6 4

Uo=u+ (B42f)
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The form (B42) has the conceptual advantage of not in- logy(L/a)
troducing the renormalization scale since its introduction Fty~ > bgbv), (C3
is unnecessary if one’s only interest isAq ¢2). and not the )70
value ofr.. Equation(B42) also makes clear that nothing \yhere bi¥tt parametrizes flow along the outflow trajectory.
depends orC, and C, at this order, so that one does not For the infrared behavior at large and smallt, we can

really need those integrals. And it makes clearer that there i?eplace the sum by an integration. Changing integration vari-
no O(a°%) correction toA(¢?), which is obscured by Egs. gple tos=bit,
(2.19 and(2.16). That is,

te ran

A($?)con= A(P?)j+ O(au?), (B43) F(t)~ s*73G(s)ds, (C4

yiInbJ
as in Eq.(2.11). o

However, this is not how we have implemented our cal-Wherea=2-d/y,. Fora=0, this is
culation ofA<¢>2)then quoting numbers from simulations.

2
What we have done is described in the text and the earlier F(t)~ 2t ft('-’a)dlzsfag(s)ds_ (C5)
parts of this appendix and, though equivalent throQgha), dinbJ,
will give slightly different numerical values because of dif-
ferences in higher orders m To help tame the singularity &s— 0, integrate by parts two

times. This leaves an integral proportional to

APPENDIX C: LOGARITHMS IN LARGE-VOLUME a2
SCALING FOR a=0 2 f 0 s 1g1(s)ds, (CH)
t

In this section, we review standard renormalization-group
arguments about the free energy and verify the?ﬂ.raL term  plus terms that fit the too-naive scaling for(d.12. The
appears in the free energy when=0. If one increases remaining integral may be rewritten as
renormalization scale by a “blocking” factor df, the free-

energy density of the blocked system is related to the free . . (w2 .

energy of the original system by a transformation law of the g'(OtIn(L ") +t ¢ sT'g"(s)~g"(0)]ds.

form (C7)
F{K}H=G({K})+b F{K"}), (CD  The second term has the desired analyticity properties of the

too-naive scaling fornt4.12), and the first term is the loga-

where F is the free energy per blocKK} represents the rithm of Privman and Rudnick appearing in H.14).

couplings of the theory, ang is an analytic functionde-

pending onb) that represents the contributions to the free
energy from the degrees of freedom that have been bidtked.
Iteratingn times, this becomes 1. Numerical simulation

APPENDIX D: OUR OWN ANALYSIS OF C,

n—1 In this appendix, we discuss our own attempt to determine
FUKH =2, b dgKMY) +b "dr{K™M}), (C2) C., to make a crude check of the value we take from Ref.
1=0 [13]. The scaling of the intersection valu€s,(L,L,) of

P _ . lant (r) i
where{K()} is thejth iterate of{K}. If we start with a block cumulant curve(r) is

siie of a and iterate all the way out to size, we have L{th—w_LgtLIw b-o—p¥e

n=logy(L/a). Cy(Lq,Ly)—Ce~ Ty = L,
Fort very small but nonzero, the description of the system L' —L3 1—b%t

will first flow towards the critical point, as one blocks to (D1)

larger and larger distances. But it will then eventually flow

away from the fixed point, closely following one of the two for Li,L,—. This is a simple consequence of Binder’s
unique “outflow” trajectories from the fixed poinfone for ~ analysis[9], but, for the sake of completeness, we briefly
t>0 and one fot<0), corresponding to all irrelevant cou- outline the argument in Appendix D 2.

plings being set to zero. The inhomogeneous Padf the We would like to choosé as large as possible, in order to
transformation law(C2) will generate singular behavior as Make the scaling laWD1) as accurate as possible, so that we
t—0, which may then be written as may use it to extrapolate a good value@f. Our ultimate

interest in this paper is to study continuum2p theory,
which requiresua<1 and for which the scaling limit is
8()ur presentation fo“ows' for examp'e, Chapter 3 of Réﬁ]‘ L/a> 1/ua But L/a> 1/ua |mpl|es that Sma”ua S|mu|a'
which is one of many nice introductions to the renormalizationtions are an inefficient choice for getting as far as possible
group. OurF andg are that reference’sandg. We useF to avoid  into the scaling limit. Becaus€, is universal, we may ex-
confusion withf in the text, which was the free energy per physical tract it from largeua simulations rather than small simu-
volume rather than per block. lations.[In fact, we could use any model in the same univer-
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1.35 ‘ : - - - as our final result. We are suspicious that this result may
2260 have a “tail wagging the dog” systematic error. Our small
¢ data has smaller statistical error than our latgdata and
13 L o may be over weighted in the fit to what is supposed to be
= 5 «+3 © - large L asymptotic behavior(In particular, in an earlier
£ % L dead §.§- 88 fe-FT analysis where we had even poorer statistics on the large
3 125 [% é;—l;ﬁ;ag:&,@m#ﬁ data, we found a result that disagreed even more drastically
fE-i . f; . from the result of Ref[13].)
) g d
ol ] 2. Large-volume scaling of cumulant intersections
Let us quickly reproduce Binder’s resy8.5) for the scal-
Fitis to (2L,L) points only ing of ry(Ly,Ly)—r.. For largeL, we will focus on the
1.15 ‘ s . - s scaling piece of the cumulant that, in the notation of Sec.
0 0.1 02 03 04 05 06 IV A, is

(L11/\/L2—m_|_21/v|_1—a))/(l_1 1/v_L21/v)

C(t,{uj},L ™)~ Cging b¥tt,{u;bYi},b/L). D3
FIG. 20. The value€(L,,L,) corresponding to the intersec- (t1 '} ) sing { ' J ) ©3)
tion points of pairs of the curveS(r) for different lattice sizes. The  Choosingb=L,
horizontal axis has been chosen so that this relationship should be

linear asL;,L,— (which corresponds to approaching zero on the Czcsing( Lytt,{uj LYi},1), (D4)
horizontal axi$. Each point is labeled by;/a and L,/a. The
linear fit shown is only to that subset of points with=2L,. where Cgjng is @ universal scaling function. Now, treltt

andu;LYi as small and Taylor expand, keeping track of only
sality class} Our simulation code is optimized to perform the mostimportant irrelevant operatoy,

best ifua is not extremely large, and so we have chosen to e~ y o
extractC, from data taken withupa=60. Becauselya= 60 C=Cand 0.0.) + AL+ BL®. (3)

is not a small value otia, the O(a) improvements to the Note thatA and C¢,(0,0,1) are universal, big is not, be-
action are pointless; unlike other simulations reported in thig.ayse it depends on the valuewgf. Now look for the inter-
paper, we quote quantities in terms of the bare lattice paramsection for two different system sizes:

eters.

A variety of intersection value,(Lq,L,) of C(r) Csing(0'0,1)+AL3l’tt+ BLl_“’:Csing(0,0,l)+AL§‘t+ BL,®,
curves are plotted in Fig. 20 against L}l'(Lz_‘“
— Ly )L} LY which, by Eq.(D1), should lead to a lin-
ear relationship at large,,L,. The errors on points sharing which has solution
an L value are correlated, and we compute and use the full
correlation matrix for making fits. For the sake of simplicity, B(L;“—L,“)
however, we have only fit the subset of data with=2L,, t=—— (D7)
with results forC; and the associated confidence levels given ALy —LY)
in Table II. If we naively include smaller and smallewuntil ) .
the confidence level of the fit becomes poor, we would fit all!P 0 corrections suppressed by additional powers bf 1/
the way down to_=4 and obtain This is just t_he_ scall_ng3.5).qu9.ted forry—r.. (And one
seesa posteriorithat it was justified to tredt¥tt as small in
the L—<o limit.) All that is necessary to derive the scaling
C.=1.24027) (D2) (D1) of Cy is to plug Eq.(D7) back into Eq.(D6) and
renameCyg;,(0,0,1) asC,.
TABLE Il. Results of linear fits to the subset of the data of Fig. In the main text, our procedure for defining the nominal

(D6)

20 with L,=2L,, and the corresponding confidence levéNA” transition in finite volume, for our smalla simulations, is to
means not applicable The first row corresponds to a fit to two 1INd the point where€=C.. From Eq.(D6), one may verify
points, the second to three points, etc. that this prescription gives
; B
Fit CC C.L. t:KL—yt—wNL—yt—w, (D8)

L,/a=16 1.2299) NA

Ly/a=12 1.2434) 6% as asserted in the main text.

L,/a=8 1.240422) 13%

L./a=6 1.241019 25% APPENDIX E: SMALL Lu EXPANSION OF A(¢?),

L,/a=4 1.24027) 35%

L,/a=3 1.23947) 1% In this appendix, we compute the expected result for

A{ ¢?) for small volumes in the continuum limit, where we
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define the nominal critical temperature in such volumes usAs we will see explicitly below, the UV subtraction that
ing Binder cumulants, as explained in Sec. Ill. We have reconverts{¢?) to A{¢?) in the continuum limit is not rel-

peatedly described “short-distance” physi@istance small

evant until next order inl(u) "1, and soA(¢?)/u also has

compared to 1) as perturbative, and so for small volumes the expansioE4).

(L<1/u), one might first try simple perturbation theory to
computeA(#?). The leading-order diagram contributing to
A{¢?) is shown in Fig. 1) and corresponds to

o N 1
()= 2 oy (ED
where for the sake of generality we have considered a)O(
model, and the actual case of interestNis2. The sum is
over the discrete momenfa=27n/L associated with thé
X L XL periodic volume. There is a problem with Ed1),
however. Consider the mean-field theory approximatign
=0 to the critical value of. The sum then has an infrared

2. The caser =0: Next-to-leading order

Now, consider the leading-order perturbative contribution
8($?) of the nonzero modes tp?) from Eq. (E1),

1
DS

3
L p#0

N

& %)= (E5

This sum is UV divergent, and the UV divergence is simply
the free-field divergence discussed in S@EA). It is sub-
tracted when we comput&($?) as opposed t¢4?). Note
that our prescription$2.11) or (2.15 for computingA({ ¢2)

in our simulations involve subtracting thefinite volume

divergent term associated wigh=0. The problem is thatitis  free_field result for(¢2). In the continuum limit, this sub-
more accurately large-momentum physics that is perturbayction turns the perturbatiofEs) into

tive, rather than small-distance physics. So, even when
—0, the physics associated with the=0 modes is nonper-

turbative. Since this is only one mode, we simply analyze it

separately, and then treat all the0 modes perturbatively.

1. The caser=0: Leading order

To illustrate the calculation, let us first computé¢?) if
r=0. We'll later come back to consider the actuahat is

1
2

p

d®n
_fW

Individually, the sums and integrals above must be consis-

N 1
5A<¢2>=F;0F—pr

N

1
PELAP A

o . (E6)

>
n#0

chosen by the criteria of our simulations that the cumulanfently regulated, for example, by dimensional regularization

C=C,. Consider the approximatio®, to the action where
we ignore everything but the=0 modesdgp,

u L3u
|V ol -+ E|¢o|4 = T|¢o|4- (E2)

So:f d3x

Note that this result holds on the lattice as well as in the

continuum. Thep=0 contribution toA{¢?) is then

f dNepoe ™ 50| ol

41 1/2f dNxeX'x?
(9= ()

L°u
de¢oe_% fd“xe‘x4
N+2
41 1/2 4

By dimensional analysis, the leading perturbative contribu-

tion of thep#0 modes to{ %) should be ordet. ~* and so
is dominated by the zero-mode contributi@B). Specializ-
ing to N=2, we then have

<¢2>r:0_

[ 4!
u - (Lu)3/2+o((|-u)71)

—~ @54_ O((LU)fl)
o (Lu)3/2 '

(E9)

or by keeping the system on a lattice with arbitrarily small
lattice spacing.

There are a number of ways to evaluate the result numeri-
cally. One is to start by regulating with dimensional regular-
ization, working ind spatial dimensions. Then

PINT I Nf - (E7)
F p#0 EZ DHZ
N 1 dn
PRI PRCE
Now rewrite
1 o 5
—zzf dse s, (E8)
n 0
Theny, n,, ...,sums and integrals then factor, giving
1 ddn . T d/2
| = -s\1d_1 | —
go Y. f n2 jo ds[[63(e )1°-1 s) ]
(E9
where
oa(q)= 3 a ® (E10

is a special case of an elliptic theta function. The integral on
the right-hand side of EqEE9) is absolutely convergent in
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d=3, so we may now dispense with dimensional regulariza- o RykH(N=2)/2
tion and sed to three. The integral is then easily done nu- I(R)= fo dye ¥ "My : (E17)
merically, giving

L dn and
;0 2~ | 7 =—891363. (E1D) r (4!L3>1’2

2

u (E18

For N=2, one then has o
Now note that the volume averageof the field, used in

2
6A(¢%)i—o 0451 579 (E1p the definition of the cumulant, is simply,. Specializing

u Lu now to N=2 and doing the, integrals, one obtains
The effect of interactions in the nonzero mode sector will Jr R
i ill give higher- . lo(R)= ——eR7erfd — (E19
be perturbative for smallu and will give higher-order con 0 2 2]

tributions toA($?). However, we must also consider inter-
actions of the zero mode, with the nonzero modes, which 1
will give corrections to the actiors, used in our earlier |1(R)=§[1—R|0(R)]. (E20
analysis of¢q. For instance, the coupling in Sy will pick

up corrections of ordet.u?. This will generate arO(Lu) 1

relative correction to the zero-mode contributi@4), and so I,(R)==[—R+(R?+2)I4(R)]. (E2D)
that correction will be higher order than the contribution 4
(E12 computed above. A similar story will hold for correc-

. ] ; . ) The cumulant may be written
tions tor (and for the effects of higher-dimensional interac- y

tions) with the complication that will receive some infinite (d8)  1x(R)Io(R)
contributions in the continuum limit, corresponding to the CE< 2>22 (1R (E22
usual mass renormalization. The latter is absorbed by the o !

usual renormalization af, and so one has A numerical search for the point whe@= C.~=1.243 gives

5<¢2>r:0 _ 2.763 95_ 0.451 570+ o(Lu)-1?) R=—2.5073. (E23
u 3/2 Lu
(Lu) (E13) At this R, the zero-mode contribution ta?) is then
. . . . . 41\ 21 (R)
if one interprets the in the conditionr =0 as being renor- (%) :<T) 1 +O((Lu)Y
malizedr. (The details of the renormalization scheme will © \L%u) 1o(R)
not matter at the order shown.
6.440 03+ oL Y (E24
=— u .
3. The caseC=C, (L3u)¥?

Now, instead of setting=0, we will chooser so that the Since the result foR is a pure number, the definition

lcumd_ulantCijls eque|1I to its ((:jntlcafl value. Let ?S b((e)gln V;"th 4 (E18 of R shows that is of orderyu/L3, which is smaller
Fe(?r g;negr;grrare rvsgatlf}(;fhzr:/e so focus on just phe0 sector. by a power of\Lu than any nonzero momentum squared,
' which are order. 2. Sor may be ignored in finding the
L3r L3u leading contribution of the nonzero modes, with the effect
So= 7| dol?+ T' dol* (E14  thatSA(¢?) is the same as in the earlier=0 analysis. Add-
' ing Egs. (E24) and (E12 then produces the resu(t.15
quoted in the main text.

and
APPENDIX F: SYSTEM SIZE AND THE SIMULATIONS
N desboe*SOl%lz" OF GRUTER et al.
(o) dNee S ' (E15 One of the applications of @) field theory is to studying
f boe the corrections to the critical temperature, due to interac-
tions, for Bose-Einstein condensation of a nearly ideal non-
By a change of variables, this may be rewritten as relativistic Bose gas. This application has been previously
studied using numerical techniques. Our discussion of sys-
o[ 4! 21 (R) tem size in Sec. IV C has implications for an early study by
(¢0)= L3u/ 14(R) B19  Griter et al. [22], which is that much of the data collected
was perhaps in insufficiently large volume. These simula-
where tions did not make use of @) field theory: They worked in
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the canonical ensemble and studied the path integral for at the transition. The conditiorhisu=400 or 200 may then be
fixed numberN, of particles in a finite volumev. If no  translated into the conditions

attempt were made to fit for large-volume corrections, then
Fig. 2 makes it clear that one should take roughiy= 400

to keep those corrections moderately small. It is illuminating na’=—— or
to also consider the less restrictive condition of roughly Np Np
=200. We may translate these conditions on system size to

the context of Bose-Einstein condensation by translating th
parameteu of the Q(2) field theory. For this application, the
relation is[2] u=96m?a/\?, wherea is the scattering length
of the atoms\=%2#/mkgT is the thermal wavelength,
andm is the mass of the atoms. Using the ideal gas approxi
mation T.=T,=(27%2/kgm)[n/£(3/2)]¥® for the critical
temperature, one may write

. (F2

The largestN, used in the simulations of Gter et al. was
N,=216, and their extraction of the critical temperature de-
pended on results witN,=125 as well. For the latter, our
rough conditions for being in large enough volume then re-
quires na®=>0.004 or 0.0005, depending on whether one
takes the more or less restrictive conditibn=400 orLu
=200. Griter et al. quote results fona® all the way down to
3\2 10~°, and the majority of points in their smaila® tail have
34’(5) na’<10 % (See Fig. 3 of Ref[22].) It therefore seems at

3

nad= (F1) least possible that they may have had inadequate system

Lu
96772) Np sizes for their extrapolation of thea—0 behavior.
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