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Monte Carlo simulation of O„2… f4 field theory in three dimensions
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Using standard numerical Monte Carlo lattice methods, we study non-universal properties of the phase
transition of three-dimensionalf4 theory of a two-component real fieldf5(f1 ,f2) with O~2! symmetry.
Specifically, we extract the renormalized values of^f2&/u and r /u2 at the phase transition, where the con-

tinuum action of the theory is*d3x@
1
2u“fu21

1
2rf21(u/4!)f4#. These values have applications to calculating

the phase-transition temperature of dilute or weakly interacting Bose gases~both relativistic and nonrelativis-
tic!. In passing, we also provide perturbative calculations of variousO(a) lattice-spacing errors in three-
dimensional O(N) scalar field theory, wherea is the lattice spacing.

DOI: 10.1103/PhysRevE.64.066113 PACS number~s!: 02.70.Uu, 64.60.2i
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I. INTRODUCTION

A long-standing problem is how to compute the first co
rection DTc , due to interactions, to the critical temperatu
Tc for Bose-Einstein condensation of a very dilute nonre
tivistic homogeneous Bose gas in three dimensions. In R
@1#, we review how this problem is related to thre
dimensional O~2! f4 field theory@2#, present the results o
lattice simulations of that theory, and so determineDTc . The
purpose of the present paper is to provide details of th
simulations. The lattice results presented here may also
applied to relativistic Bose gases@3,4# and to nonrelativistic
gases in a trapping potential@5#.

Three-dimensional O~2! f4 theory has the continuum ac
tion

S5E d3xF1

2
u“fu21

1

2
rf21

u

4!
~f2!2G , ~1.1!

where f5(f1 ,f2) is a two-component real field andf2

[f1
21f2

2. For fixedu, we will vary r to reach the second
order critical pointr c(u) of this model. The shift in the criti-
cal temperature of a nonrelativistic homogeneous sin
species Bose gas is given in terms of this theory by@2#

DTc

T0
52

2mkBT0

3\2n
D^f2&c , ~1.2!

wherem is the boson mass,n is the number density, and

D^f2&c[@^f2&c#u2@^f2&c#0 ~1.3!

represents the difference between the critical-point value
^f2& for the cases of~i! u non-zero and~ii ! the ideal gasu
50 ~with r→0 from above!. The result forD^f2&c in the
O~2! theory ~1.1! can only depend onu and so, by dimen-
sional analysis, it must be proportional tou. A primary goal
will be to discuss in detail the measurement of the numer
constantD^f2&c /u from lattice Monte Carlo simulations o
the theory. As reported in Ref.@1#, our result is
1063-651X/2001/64~6!/066113~22!/$20.00 64 0661
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D^f2&c

u
520.001 19860.000 017. ~1.4!

The critical valuer c of r is also useful for various theo
retical applications, such as determining corrections to
value of the chemical potential at the transition@5#, or to the
critical temperature of a trapped gas@5#, or to the critical
temperature of ultrarelativisticf4 theory at zero chemica
potential@4#. The f2 interaction is associated with an ultra
violet ~UV! divergence of the three-dimensional theory a
so must be renormalized. If one chooses the renormaliza
scalem̄ to be of orderu then, by dimensional analysis, th
renormalized value ofr c(m̄) must be proportional tou2. The
precise scheme used to renormalizer, and the precise choice
of m̄, is a matter of convention. In this paper, we will repo
a measurement of the numerical constantr c /u2 for r defined
by dimensional regularization and modified minimal subtra
tion (MS) at a renormalization scale ofm̄5u/3. Our result is

r c
MS~u/3!

u2
50.001 920 160.000 002 1. ~1.5!

One may convert to other choices ofm̄ by the~exact! identity

r MS~m̄1!

u2
5

r MS~m̄2!

u2
1

2

9~4p!2 ln
m̄1

m̄2

. ~1.6!

In Sec. II, we discuss the lattice action we use, its re
tionship to continuum fields and parameters, how we corr
for O(a) lattice spacing errors, and the algorithms we use
simulation. Section III details our procedure for finding th
transition, based on the method of Binder cumulants. In S
IV, we present our initial data, show that we have simula
moderately large volumes, and then discuss how to ana
the remaining finite-volume corrections by making use of
known critical exponents associated with this universa
class. The corresponding numerical extrapolations of
finite-volume corrections are given in Sec. V. Numerical e
©2001 The American Physical Society13-1
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PETER ARNOLD AND GUY D. MOORE PHYSICAL REVIEW E64 066113
trapolation of the continuum limit is presented in Sec. VI.
table of all our raw data for various size lattices and values
coupling may be found in Appendix A. The derivations
the O(a) lattice-spacing corrections used in this paper
given in Appendix B. The remaining appendices inclu
various discussions of scaling laws used in the text, an a
lytic calculation of results for small lattice volumes, and
critical discussion of one of the early simulations, in t
literature, of the Bose-Einstein condensation temperatur
dilute nonrelativistic gases.

II. LATTICE ACTION, MEASUREMENT,
AND ALGORITHM

The bare lattice Lagrangian has the form

L5a3(
x

F1

2
~2F1“ lat

2 F12F2“ lat
2 F2!1

r 0

2
~F1

21F2
2!

1
u0

4!
~F1

21F2
2!2G , ~2.1!

wherea is the lattice spacing. In an actual simulation, o
invariably chooses lattice units wherea51, or equivalently
works with rescaled fields and parametersFL5a1/2F, r 0

L

5a2r 0, andu0
L5au0. For the sake of presentation, howeve

we will generally avoid specializing to lattice units.
We work on a simple cubic lattice, and will work in cub

volumesL3L3L with periodic boundary conditions, corre
sponding to (L/a)3 sites. The simplest possible implement
tion of the lattice Laplacian, which we call the ‘‘unim
proved’’ choice¹U

2 , would be

¹U
2F~x!5a22(

i
@F~x1ai!22F~x!1F~x2ai!#,

~2.2!

where the sum is over unit vectors in the three lattice dir
tions: (1,0,0), (0,1,0), and (0,0,1). We use instead a s
dard improvement, which approaches the continuum Lap
ian faster for smooth fields

¹ I
2F~x!5a22(

i
@2 1

12 F~x12ai!1 4
3 F~x1ai!2 5

2 F~x!

1 4
3 F~x2ai!2 1

12 F~x22ai!#. ~2.3!

The difference can be seen from the Fourier transforms
the operators¹U

2 and¹ I
2 , which are

k̃U
2[a22(

i
@222 cos~aki !#, ~2.4!

k̃I
2[a22(

i
S 5

2
2

8

3
cos~aki !1

1

6
cos~2aki ! D , ~2.5!

and have smallk limits

k̃U
2 5k21O~a2k4!, ~2.6!
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k̃I
25k21O~a4k6!. ~2.7!

The unimproved Laplacian hasO(a2) error, while the im-
proved Laplacian has onlyO(a4) errors.

A. An unimproved calculation of DŠf‹

2

One of our tasks is to calculate the continuum ra
D^f2&/u. In the lattice theory~2.1!, the free field (u050)
result for ^F2& is

^F2&u0505^F1
21F2

2&u05052E
kPBZ

1

k̃2
, ~2.8!

where the integral is over the Brillouin zoneuki u<p/a. Scal-
ing out the dependence ona, we define

S

4pa
[E

kPBZ

1

k̃2
. ~2.9!

For the improved Laplacian, we obtain the value of the co
stantS by numerical integration

S.2.752 383 911 207 52. ~2.10!

On the lattice, the most straightforward implementation
the ratioD^f2&/u is then

D0^F
2&

u0
[

1

u0
F ^F2&2

2S

4paG . ~2.11!

This will approach the desired continuum value asua→0,
but the lattice spacing errors at smallua will be O(ua).

B. Relationship between lattice and continuum fields
and parameters

One of our goals will be to reduce finite lattice-spaci
errors, so that we may obtain better estimates of the c
tinuum limit with a given coarseness of lattice. To elimina
errors at a given order ina, one must not only improve the
form of the Laplacian but must also perform an appropri
calculation of the relationship between lattice and continu
parameters. To this end, we will rewrite our bare lattice
tion in terms of continuum fieldsf and parameters (r ,u) as

L5a3(
x

FZf

2
~2f1“ lat

2 f12f2“ lat
2 f2!

1
Zr~r 1dr !

2
~f1

21f2
2!1

u1du

4!
~f1

21f2
2!2G ,

~2.12!

where the renormalizationsZf , Zr , dr , and du will only
depend onua at the order of interest. We explain their der
vation in Appendix B. For continuumr defined byMS renor-
malization at a scalem̄, we find

Zf511
2C2

9

~ua!2

~4p!2 1O„~ua!3
…, ~2.13a!
3-2
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Zr511
2j

3

ua

~4p!
1S 4j2

9
2

2C1

3 D ~ua!2

~4p!2 1O„~ua!3
…,

~2.13b!

dr 5a22F2
2S

3

~ua!

~4p!
1

2

9 S ln
6

m̄a
1C323Sj D ~ua!2

~4p!2

1O„~ua!3
…G , ~2.13c!

du5a21F5j

3

~ua!2

~4p!
1S 2

32C1

9
1j2D ~ua!3

~4p!2 1O„~ua!4
…G ,

~2.13d!

where we have introduced several more numerical consta
given by various integrals in lattice perturbation theo
whose values~for the action with the improved Laplacian!
are approximately

j.20.083 647 053 040 968, ~2.14a!

C1.0.055 061 2, ~2.14b!

C2.0.033 416, ~2.14c!

C3.20.861 479 16. ~2.14d!

One needs to similarly match the operatorf2 whose expec-
tation is taken in determiningD^f2&. In Appendix B, we
discuss the relationship between the continuum and la
operators and show that the continuum result forD^f2& is

D^f2&5Zr^f
2& lat2df21O~a2!, ~2.15!

where the constantdf2 is

df25a21H 2S

4p
1

4jS

3

ua

~4p!2 1
4

9
@C423SC12SC2

12j2S1j ln~m̄a!#
~ua!2

~4p!3 2j
ra2

4p J . ~2.16!

The additional numerical constant is

C4.0.282. ~2.17!

We note in passing that the logarithm in Eq.~2.16! repre-
sents the explicit subtraction of an effect analogous to a@qua-
dratic 3 logarithmic# correction to the critical temperatur
for Bose condensation of dilute nonrelativistic gases, d
cussed in Ref.@7#. In this analogy, the lattice spacinga in our
simulation plays a role similar to the thermal wavelength
the Bose condensation problem, andu andm̄ ~which is cho-
sen of orderu) are proportional to the scattering length.

In this paper, whenever we quote simulation results fo
given value ofua andra2, we are referring to simulations o
the action~2.12! with parameters given by Eqs.~2.13! and
~2.15! with O(•••) set to zero. When we quote values
D^f2&c , we will be quoting continuum values, as given b
06611
ts,
,

e

-

a

Eq. ~2.15!. This will be adequate to reduce the lattice-spac
error toO(a2) on individual measurements ofD^f2&c /u and
to O(a) on individual measurements ofr c .

The precise definition of continuumr, and its relationship
to bare latticer 0, are in principle unnecessary if one’s inte
est is only to determineD^f2&c—one could simply find the
critical value ofr 0 at any given lattice spacing and not wor
about its relation to continuum definitions. However, as
practical matter, knowing the relationship facilitates usi
results at one lattice spacing to make a good initial gues
the critical value ofr 0 at another lattice spacing. And, a
discussed earlier, the continuum critical value ofr is of in-
terest in its own right.

Throughout this paper, continuumr should be understood
as defined byMS renormalization at a renormalization sca
m̄. That is, the continuum Lagrangian is thee→0 limit of the
(32e)-dimensional action

S5E d32exF1

2
Zfu“fu21

1

2
r baref

21me
ueff

4!
~f2!2G ,

~2.18!

with the bare continuum parameterr bare related to the renor-
malizedr 5r MS(m̄) by

r bare5r 1
1

~4p!2e S u

3D 2

, ~2.19!

and with

m[
egE/2

A4p
m̄. ~2.20!

@The factor ofegE/2/A4p in Eq. ~2.20! is what distinguishes
modified minimal subtraction (MS) from unmodified mini-
mal subtraction ~MS!; the difference between the tw
schemes amounts to nothing more than a multiplicative
definition of the renormalization scale. The constantgE
50.5772 . . . is Euler’s constant.# Three-dimensionalf4

theory is super renormalizable and the only fundamental
divergences of the continuum theory are those correspon
to the two diagrams of Fig. 1. The first has a linear div
gence, which is ignored by dimensional regularization. T
second has a logarithmic divergence, which is the origin
the u2/e counter-term present in Eq.~2.19!.

FIG. 1. The two fundamental UV-divergent graphs of co
tinuum f4 theory.
3-3
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C. Algorithm

We evolve configurations in Monte Carlo time using
combination of site-by-site heatbath and multigrid@8# over-
relaxation updates.

In Sec. III, we discuss how we define a nominal value
the locationr c of the transition in finite volume. In order to
scan for the transition, we need to be able to smoothly varr.
We use the standard technique of canonical reweight
Having made a simulation at one valuer sim of r, and accu-
mulated a Monte Carlo time series of values of

f2[
1

VE d3xf2~x!, ~2.21!

expectations at nearby valuesr 5r sim1dr can be calculated
as

^O& r5

K expS 2
1

2
Vdrf2DOL

r sim

K expS 2
1

2
Vdrf2D L

r sim

. ~2.22!

We estimate our statistical errors for the estimates or c
and D^f2&c in a given simulation run using the jackknif
method with 20 bins. The size of the bins must be la
compared to the decorrelation time, and this is verified
Appendix A, where we quote decorrelation times and sam
sizes for each of our simulations.

III. FINDING THE CRITICAL POINT

Systems only have sharply defined phase transition
infinite volume, but we use the method of Binder cumula
@9# to obtain a good estimate, in finite-volume simulations,
the critical valuer c of r. Specifically, we measure the cum
lant

C5
^f̄4&

^f̄2&2
~3.1!

as a function ofr, where the two-component vectorf̄ is the
volume average off

f̄[
1

VE d3xf~x!. ~3.2!

In infinite volume, the cumulantC is one in the ordered
phase and two in the disordered phase. In large volume, t
is a smooth transition between these two values, and
width of the transition region shrinks as the volume is
creased. Specifically, for anL3L3L volume, the width inr
of the transition region scales asL2yt in the L→` limit,
whereyt51/n and n is the correlation-length critical expo
nent. The value of the exponent is

yt[1/n.1.49 ~3.3!

for the universality class of the O~2! model.1
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One method of estimating the location of the transition
finite volume is to simply choose a fixed valueC* of C
between one and two and then define the nominalr c in finite
volume as ther for which C(r )5C* . This leads to errors in
r c ~contributing to errors in other quantities measured at
transition! that would scale away asL2yt in the largeL limit.
This L2yt scaling of finite-size errors is typical of many pre
scriptions for definingr c in finite volume.

The method of Binder cumulants improves the scaling
the finite-size error inr c from L2yt to L2yt2v, wherev is
the critical exponent associated with corrections to scali
and

v.0.79 ~3.4!

for the universality class of the O~2! model.2 One version of
the method is to measure the curvesC(r ) for two different
large system sizesL1 and L2, and then estimater c as the
point r 3 where the curves intersect. Specifically, Binder@9#
showed that, in theL1 ,L2→` limit, the error scales as

r 3~L1 ,L2!2r c;
L2

2v2L1
2v

L1
yt2L2

yt
5

b2v21

12byt
L1

2yt2v ,

~3.5!

whereb[L2 /L1. Moreover, the value of the cumulantC3 at
the intersection approaches auniversal value Cc in this
limit.3

If one knewCc in advance, then, for data in a given fini
volume, a nice method for determining a nominal point
transition is to choose ther such thatC(r )5Cc . The finite-
size error in r c caused by this procedure also scales
L2yt2v. This method is simpler and statistically a littl
cleaner than trying to find the intersection of twoC(r )
curves for two different values ofL. This is the method we
shall use, but first we need a value ofCc . BecauseCc is
universal, its value can be measured from simulations of
model in the same universality class. We will use a va
determined by Campostriniet al. @13#, who also simulate a
two-component lattice f4 theory. They obtainedCc
51.2430(1)(5),where the two numbers in parenthesis re
resent their statistical and systematic errors, respectively

1The value of roughly 1.5 comes from the scaling relationshipn
5(22a)/d and the fact that the specific heat critical exponenta is
very small in this universality class. The best value ofa is
20.010 56(38) and comes from experiments in Earth orbit on
perfluid 4He @10,11#. ~See in particular endnote 15 of Ref.@11#, and
see also footnote 2 of Ref.@13#.! For comparison, theoretical value
~making use of a522dn as necessary! are a520.011(4),
20.004(11), and20.0146(8) from three-dimensional~3D! series
techniques@12#, the e expansion@12#, and Monte Carlo@13#.

2Values arev50.789(11), 0.802(18), and 0.79(2) from 3D s
ries techniques@12#, the e expansion@12#, and Monte Carlo@14#.

3For a nice numerical demonstration of this universality, see
Monte Carlo studies of Ising universality in Ref.@15#.
3-4
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the rest of this paper, when quoting results for the transit
in a given finite volume, we will mean the point where

C~r !51.243 ~3.6!

for that volume. As a check, we have also made a much
accurate determination ofCc using our own simulations
which is discussed in Appendix D. We findCc51.2402(7),
which we suspect has a systematic bias, discussed in
Appendix. The difference between these values ofCc is in-
significant for our purposes. We have checked that the
ference would only change our final results by a tiny fract
of an error bar.

IV. VOLUME DEPENDENCE OF DŠf2
‹c

As discussed in the introduction, the only parameter of
continuum problem at the critical point isu. So the only
length scale of the problem is 1/u. The relevant measure o
the sizeL of a finite-volume lattice relative to this scale
thereforeLu ~and similarly the relevant measure of lattic
spacing isua). Figure 2 shows a plot of our results fo
D^f2&c on L3L3L lattices vsLu for ua56. As can be
seen, our largestLu values are clearly large: the data clea
shows nice convergence towards an infinite volume limit.
understand the size of the remaining finite-volume error,
will want to fit the volume dependence at largeLu to an
appropriate scaling law.

A. Large volume scaling ofDŠf2
‹c

The scaling of largeL corrections depends on univers
critical exponents of the O~2! model, which is in the same
universality class as the classicalN52 Heisenberg ferro-
magnet. The language of critical exponents in the O~2!
model is borrowed from correspondence with the Heisenb
magnet, andt[r 2r c is referred to as the reduced ‘‘temper
ture’’ in this context,C}d2(ln Z)/dt2 as the ‘‘specific heat,’’
and so forth. It is important to emphasize that this langu
holds the potential for confusion because, in many appl
tions ~such as Bose-Einstein condensation at fixed dens!,

FIG. 2. Simulation results forD^f2&c /u vs lattice size in physi-
cal units (Lu) for ua56. The largeLu curve shown is a fit to the
rightmost four data points, with confidence level 61%.
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t[r 2r c is not, in fact, linearly related to the actual temper
ture of the system near the critical point, andd2(ln Z)/dt2 is
not directly the physical specific heat.4 In any case, the ana
log of the ‘‘energy density’’E/V under this correspondenc
is

E

V
}

d~ ln Z!

Vdt
5

1

V

d

dr
lnE @Df#e2S[f]}^f2&, ~4.1!

whereV5Ld is the system volume andd53 is the dimen-
sion. The problem of understanding how the finite-volum
corrections tô f2& scale withL may therefore be stated i
this language as the problem of how corrections to the ‘‘
ergy density’’ scale withL for anything in this universality
class.

The standard finite-size scaling ansatz provided by ren
malization group methods is that the free-energy densitf
52V21ln Z scales as5

f ~ t,$uj%,L
21!5 f reg~ t,$uj%!1b2df sing~bytt,$ujb

yj%,b/L !

~4.2!

for periodic boundary conditions, wheref reg and f sing gener-
ate the so-called regular and singular parts of the free en
in the infinite volume limit.~See Refs.@17,18# and references
therein.! The lengthb is an arbitrary renormalization scal
~block size!, and $uj% denotes the set of infrared-irreleva
operators~with correspondingyj,0). Standard notation for
critical exponents isn51/yt , and we will denote the small
est uyj u associated with the irrelevant operators$uj% asv.

Choosingb5L,

f ~ t,uj ,L21!5 f reg~ t,uj !1L2df sing~Lytt,ujL
yj ,1!.

~4.3!

The usual infinite-volume scaling form is obtained by taki
L→` with t fixed, which, for the limit to exist, requires

f sing~t,0,1!;t2d/yt as t→`. ~4.4!

In contrast, for fixedL, the free energy will be analytic int,
since there are no phase transitions in finite volume. We
make a Taylor expansion of the finite-volume free ene

4A uniform, nonrelativistic Bose gas is a constrained system:
particle densityn is fixed. This constraint causes a different rel
tionship of model parameters and the physical temperature than

unconstrained systems@16#. For example, the critical exponentsx̃

5(ã,b̃,g̃,ñ) of the actual system are related to the standard ex

nentsx5(a,b,g,n) of the field theory by~i! ã52a/(12a), and

x̃5x/(12a) for the others, ifa.0, or ~ii ! x̃5x if a,0. This
relation explains the difference between mean-field theory ex
nents for the O~2! model ~e.g., a51/2) and the exponents of

noninteracting Bose gas~e.g.,ã521).
5We have not included a ‘‘magnetic field’’h coupling tof, with

a corresponding argumentbyhh in f sing, because we will only be
interested in the caseh50 and are not interested in correlations
f ~as opposed tof2), which could be generated by derivatives wi
respect toh.
3-5
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~4.3! in t ~as well as$ujL
yj%), which should be a usefu

expansion when the arguments of the scaling piecef sing are
small. That is, for situations whereLytt→0 as we takeL
→`, we can Taylor expand Eq.~4.3! as

f 5~A01B0L2d1C0L2d2v1••• !1t~A11B1L2d1yt

1C1L2d1yt2v1••• !1t2~A21B20L
2d12yt1••• !

1•••, ~4.5!

where we have only displayed the leading corrections du
irrelevant operators. Differentiating with respect tot to get
the energy density, we find that^f2& scales in large volume
as

^f2&5~A11B1L2d1yt1C1L2d1yt2v1••• !

12t~A21B20L
2d12yt1••• !1•••. ~4.6!

As mentioned earlier, use of the method of Binder cum
lants to determiner c means that, in our application,

t;L2yt2v. ~4.7!

This indeed satisfies the conditionLytt→0 asL→`, and so
the expansion~4.6! is appropriate. For our application, w
then have

^f2&5A11B1L2d1yt1A28L
2yt2v1C18L

2d1yt2v1•••.
~4.8!

Using the standard scaling relationa522nd for the specific
heat scaling exponenta, this may be rewritten in the form

^f2&5A11B1L2(12a)yt1A28L
2yt2v

1C18L
2(12a)yt2v1•••. ~4.9!

The value ofa in the three-dimensional O~2! model is very
small: a.20.013, corresponding to the valueyt.1.49
quoted earlier@10–12,14#.

The renormalizationsZr anddf2 that convert̂ f2& lat into
D^f2& in Eq. ~2.15! do not introduce any different powers o
L, and so the form of the large-L expansion ofD^f2& is the
same as that for̂f2& in Eq. ~4.9! above, though the coeffi
cients are different.

B. Large-volume scaling foraÄ0

Because we do not have large-volume data spann
many decades inL, a is zero for all practical purposes. An
so one might as well use thea50 limit of the large-volume
scaling ~4.9!, which corresponds toyt5d/2. Typically, a
50 generates logarithms in a renormalization group an
sis, which can appear as a superposition

lim
a→0

sz1qa2sz

a
5qszln s ~4.10!

of power lawssz1qa andsz for some variable of interests.
One might therefore expect that thea→0 limit of the large-
volume scaling~4.9! is
06611
to
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^f2&5A11B1L2d/21L2d/22v~C ln L1D !1•••.
~4.11!

It is useful to verify the presence of a logarithm. If it we
not there, we could include the first corrections to scaling
largeL fits of our data using a three-parameter fit@A1 ,A2 ,D#
rather than a four-parameter fit@A1 , B1 , C, D; or equiva-
lently A1 , B1 , A28 , C18 in Eq. ~4.9!#.

The existence of the logarithm may be directly related
the well-known logarithmic divergence of specific heat w
t when a50. We give a renormalization group analysis
Appendix C that makes this explicit. Here, let us just no
that the logarithm follows from an old proposal by Privma
and Rudnick@19#. Ignore corrections to scaling for the mo
ment, and suppose that ata50 the free energy had the gen
eral form ~4.3! discussed earlier

f ~ t,L21!; f reg~ t !1L2df sing~ tLd/2!. ~4.12!

In order to get a logarithmic divergence ln(t21) of the spe-
cific heat in the infinite-volume limit, we need a term
t2ln(t21) in the free energy in that limit. So we must have

f sing~t!;At2ln~t21! as t→`. ~4.13!

But this would givef ; f reg(t)1At2ln(t21L2d/2), which does
not have a goodL→` limit. The solution is to suppose tha
the a50 version of the free energy is instead

f ~ t,L21!; f reg~ t !1At2ln~Ld/2!1L2df sing~ tLd/2!,
~4.14!

which is what Privman and Rudnick proposed. Note that
term is analytic ast→0 for L fixed, as it must be. The term
gives at ln L contribution to the energy densityE/V, which,
for thet;L2yt2v of interest to us, gives rise to the logarith
term in Eq.~4.11!.

C. How large is large volume?

Before proceeding to numerical fits of the large-volum
dependence, it is useful to first have an idea of how largL
should be before one might reasonably hope for lar
volume scaling to hold. From Fig. 2, we see that the fini
volume corrections to the continuum value ofD^f2&c be-
come 100% where the data crosses zero, at roughlyLu
;200. So, one might guess that this is very roughly the sc
where scaling starts to set in—the scale that separates s
distance perturbative physics from long-distance critic
scaling physics. We can check this rough assessment f
the other side. In the limit of smallLu, the physics of fluc-
tuations is perturbative, and one may analytically comp
the expected value ofD^f2&c order by order in powers o
Lu. We perform this computation in Appendix E in the co
tinuum (ua50) to next-to-leading order~NLO! in Lu, with
the result that

D^f2&c

u
5

6.440 03

~Lu!3/2
2

0.451 570

Lu
1O„~Lu!21/2

…

~4.15!
3-6
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for our critical value~3.6! of the Binder cumulant. The re
sulting curve is shown in both Figs. 2 and 3~as well as the
leading-order smallLu result in Fig. 3!. One can see that th
small Lu expansion becomes unreliable pastLu;200,
which is the same as the previous scale estimate.~There is
obviously nothing precise about this statement. The scal
which the second term in the smallLu expansion become
50% of the first term, for example, isLu;50.!

Interestingly, the scaleLu;200 is close to what one
might estimate on the back of an envelope from a largeN
approximation to the theory. In largeN, one replaces the
O~2! theory studied here by an O(N) theory ofN scalar fields
and solves the theory in the approximation thatN is large—a
program pursued for the problem of Bose-Einstein cond
sation of a nonrelativistic gas in Refs.@20,21#. In the N
→` limit, one introduces an auxiliary fields whose propa-
gator represents a geometric sum of bubble diagrams, su
that shown in Fig. 4. The corresponding resummed propa
tor is proportional to

1

3

Nu
1S̃0~p!

, ~4.16!

whereS̃0(p) represents the basic massless bubble integ

S̃0~p![
1

2El

1

l 2u l 1pu2
5

1

16upu
. ~4.17!

FIG. 3. Simulation results forD^f2&c /u vs lattice size, showing
more small volume data than Fig. 2. The dot-dash curve shows
next-to-leading-order smallLu expansion of Eq.~4.15!. The dotted
curve shows just the leading-order term of that expansion.

FIG. 4. Bubble chains, which are the source of scale depend
in largeN calculations ofD^f2&c in O(N) theory @20,21#.
06611
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The propagator~4.16! changes from its large momentum b
havior (→ constant! to its small momentum behavior (}p)
at a scale given by 3/Nu;S0(p). This corresponds top
;Nu/48 and so distance scales of orderL;2p/p
;96p/Nu. Setting N52, we find Lu;48p;150. Of
course, one would never hope that an estimation this cr
would be useful beyond, at best, the factor of two level.

Our discussion of system size has implications for
validity of an early numerical study of the critical temper
ture for Bose-Einstein condensation for nonrelativistic ga
@22#. We discuss this in Appendix F.

V. NUMERICAL EXTRAPOLATION OF Lu\`

A. Extrapolating DŠf2
‹c to Lu\`

We now examine fits of theua56 data of Fig. 2 to the
largeL scaling form of Eq.~4.11!. The circles in Fig. 5 show
the result of extrapolating toL→` using the leading-orde
scaling corrections in Eq.~4.11!—that is, ignoring the sub-
leading terms, which involve the exponentv. For compari-
son, the diamonds show what happens if we ignore fin
size effects altogether; the corresponding confidence le
are terrible. The vertical dashed line in the figure marks
moderate system sizeL5200 ~discussed in the previous se
tion!, below which you should become suspicious of a
attempt to fit the data to a large-volume scaling form.

A simple method for assigning a final result for the e
trapolation is to take our best fit with a correct scaling for
As seen in Fig. 5, the leading-order scaling formA
1BL2d/2 is perfectly adequate for fitting our largeLu data.
Our procedure is to fit the data for lattice sizes greater tha
equal to a givenLmin , decreasing this minimum size for a
long as the fit remains stable with a reasonable confide
level. We take as our estimate the 61% confidence level fi
Lu>384, which gives

he

ce

FIG. 5. Extrapolations of theua56 data of Fig. 2 toL→`
under various assumptions of the functional form. The horizon
axis shows the smallest value ofLu of the data used for the fit
Percentage confidence levels are written next to each extrapol
whenever non-negligible (>1%), and ‘‘NA’’ ~not applicable! re-
fers to those cases where the number of data points used for th
equals the number of parameters.
3-7
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FD^f2&c

u G
ua56

520.001 289~9!, ~5.1!

which is depicted by the shaded region of Fig. 5.
As described in Ref.@1#, we will actually useLu5576 as

a reference point from which to derive finite volume a
finite lattice-spacing corrections. Figure 6 is similar to Fig
but shows the size of the finite-size correction atLu5576, as
determined by the fit. The best fit~the 61% confidence leve
one! gives

FD^f2&c

u G
Lu5576

2FD^f2&c

u G
Lu→`

50.000 241~7!,

~5.2!

and we will use this difference, rather than the limit~5.1!, in
what follows. @The difference is determined by the coef
cient B of our fit to A1BL2d/2, and so is determined by a
the data points of that fit; it is not simply our (Lu,ua)
5(576,6) data point minus the limit~5.1!, which would pro-
duce a larger error.# As we shall see,ua56 is a reasonably
small value ofua, and we expect this to be a good estima
to the finite-volume corrections in the continuum (ua→0)
limit.

As a check that corrections to scaling will not radica
alter our results, we show as squares in Fig. 7 the resu
fits to Eq.~4.11!. The values are consistent with the previo
result, with larger errors because we are fitting more par
eters. The triangles show a simplified fit, with one less
rameter, that ignores the logarithmic dependence.

B. Extrapolating r c to Lu\`

We will now make a similar analysis of finite-size effec
for the critical valuer c of r. The continuum value ofr is
convention dependent—it depends on one’s choice of re
malization scheme and renormalization scale. As discus
earlier, our convention will be to definer with MS regular-
ization at the renormalization scalem̄5u/3. The conversion
formula~1.6! to other choices ofm̄ can be extracted from Eq
~2.13c! and the fact that the theory is super-renormalizab

FIG. 6. As Fig. 5, but shows the magnitude of the finite-s
correction toD^f2&c /u at Lu5576, as determined by the fit.
06611
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Figure 8 shows, forua56, the dependence on syste
size of our finite-volume determinations ofr c(u/3)/u2. As
discussed in Sec. III, the finite-size corrections are expec
to scale asL2yt2v as L→`. Figure 9 shows the result o
extrapolating an infinite-volume result by fitting various su
sets of the data toA1BL2(d/2)2v. Taking the highest confi-
dence level fit,

F r c~u/3!

u2 G
ua56

50.002 882 8~6!. ~5.3!

Figure 10 shows the size of the finite-volume error at o
canonicalLu5576, as determined by the fits,

F r c~u/3!

u2 G
Lu5576

2F r c~u/3!

u2 G
Lu5`

520.000 006 04~26!.

~5.4!

FIG. 7. As Fig. 6 but showing extrapolations that include co
rections to scaling. Where two confidence levels are listed on to
each other, the upper one is for the square data point and the lo
for the triangular data point.

FIG. 8. ua56 data for the nominal value ofr c /u2 ~defined in

MS renormalization at renormalization scalem̄5u/3) as a function
of system size. The fit shown by the dashed line is the large-volu
fit to all but the leftmost data point.
3-8
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VI. NUMERICAL EXTRAPOLATION OF ua\0

A. Extrapolating DŠf2
‹c to ua\0

We will now discuss numerical results for the continuu
limit a→0 while holding the physical volume of the lattic
fixed. This can be expressed asua→0 holding Lu fixed.
Since the number (L/a)3 of lattice sites we can practicall
include in a simulation is limited, we may obviously explo
smaller values ofua when we fix smaller values ofLu. As a
test that we understand our lattice-spacing errors, we h
therefore made several simulations at the rather mode
system size ofLu5144 ~see the discussion of Sec. IV C!.
The results for the dependence ofD^f2&c /u on ua are
shown by the squares in Fig. 11. If our corrections forO(a)
errors have been calculated correctly, the remaining e
should beO(a2). Indeed, all but the largest twoua data
points in Fig. 11 fit very well the functional formA
1B(ua)2, with a confidence level of 94%.

It is interesting to compare to what would have been
tained if we had used the same data but instead plotted
uncorrected

FIG. 9. Extrapolations of theua56 data of Fig. 8 toL→`
using the functional formA1BL2yt2v. The horizontal axis shows
the smallest value ofLu of the data used for the fit. Confidenc
levels are written as described for Fig. 5.

FIG. 10. As Fig. 9, but showing the magnitude of the finite-s
correction tor c /u2 at Lu5576.
06611
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D^F2&c

u0
5

1

u0
F ^F2&2

S

2paG ~6.1!

vs u0a, whereF andu0 are the bare lattice fields and cou
pling of Eq.~2.1!. This uncorrected data is represented by
diamonds in Fig. 11. One clearly sees theO(a) corrections.
We should make clear that this is stillLu5144 data and is
not Lu05144 data, which would have required addition
simulations.

Figure 12 shows theua dependence at a reasonably lar
physical system size ofLu5576. We show extrapolations o
the ua→0 limit in Fig. 13. Here, the 10% confidence leve
of fits to A1B(ua)2 are less spectacular than theLu5144
data, though not unreasonable. Because of the lower co
dence levels, we have been a little more conservative in
error estimate. We take as our result for theua→0 limit the
shaded region of Fig. 13, which has been chosen to co
both the 10–15% confidence level fits:

FIG. 11. The squares show results forD^f2&c /u vs ua at Lu
5144. The line through them is a fit of the first six points toA
1B(ua)2. The diamonds represent the corresponding uncorre
data, as described in the text. To guide the eye, a straight line
been fit through the first three points, though the actual smallua
behavior is linear3 logarithmic.

FIG. 12. Results forD^f2&c /u vs ua at Lu5576. The line is a
fit of A1B(ua)2 to all but the rightmost data point.
3-9
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FD^f2&c

u2 G
Lu5576

520.000 957~15!. ~6.2!

Combining this with the finite-volume correction~5.2!, and
adding errors in quadrature, we arrive at our final value~1.4!
for the infinite-volume continuum limit. Note that the dom
nant error in this estimate comes from theua→0 extrapola-
tion.

B. Extrapolating r c to ua\0

The circles in Fig. 14 show the dependence ofr c on ua at
the medium system size ofLu5144, where we may simulat
down to relatively small values ofua. The data fits well to a
linear dependence onua, with the fit shown to the first six
points in the figure having a 38% confidence level. The
angles in the same figure show similar dependence for
reasonably large system size ofLu5576. The corresponding
extrapolations toua50 based on linear fits are shown in Fi
15. We take theua50 extrapolation to be

FIG. 13. Extrapolations of the data of Fig. 12 toua50 fitting to
the form A1B(ua)2. The horizontal axis shows the maximu
value ofua used for each fit. Confidence levels are written as
scribed for Fig. 5.

FIG. 14. Results forr c /u2 vs ua at Lu5144 andLu5576

~defined inMS renormalization at renormalization scalem̄5u/3).
The lines are linear fits.
06611
-
e

F r c~u/3!

u2 G
Lu5576

50.001 914 1~21!, ~6.3!

as shown by the shaded region of the figure. Combining w
our estimate~5.4! of the finite-size error atLu5576 gives
our final result~1.5! for the infinite-volume continuum limit.
Again, the dominant error comes from theua→0 extrapola-
tion.

C. Interdependence ofLu\` and ua\0 extrapolations

In this paper, we have treated the extrapolation of o
finite-volume correction, taken fromua56 data, as indepen
dent from our continuum extrapolation, taken fromLu
5576 data. Consider the case ofD^f2&c /u. In principle, the
two extrapolations are not completely independent beca
the coefficientB in the formA1BL2d/2 used for our largeL
extrapolation is not universal. Its value will have some d
pendence onua. For our procedure, we would like to know
the value ofB at ua50, to obtain the largeL correction~5.2!
at ua50. Instead, we have the largeL correction atua56,
which will be slightly different. In numerical terms, we wil
have underestimated our systematic error ifB@ua56# dif-
fers from B@ua50# by ;7%, which is the final error on
D^f2&c /u quoted in Eq.~1.4! relative to the size of the
finite-volume correction~5.2!.

How does the coefficientB depend onua as ua→0?
Because of our improvements to the action and to the op
tor f2, the answer is that smallua corrections toB vanish as
(ua)3. To see this, note that the only quantities we havenot
matched throughO@(ua)2# arer anddf2. However, neither
of these contribute toB. df2 is a constant and thereforeLu
independent, and our procedure tunes to the critical valu
~the continuum parameter! r whether or not the lattice pa
rameter is correctly matched to the continuum one. The
sidual difference between lattice and continuumr does ap-
pear in Eq.~2.16!, but, becauser 2r c vanishes asL2v2d/2,
this does not contribute toB either. We should not expec
such a high-order correction to be of any consequence.

-

FIG. 15. Linear extrapolations of theLu5576 data of Fig. 14 to
ua50. The horizontal axis shows the maximum value ofua used
for each fit. Confidence levels are written as described for Fig.
3-10
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There is an alternate way of fitting our data that make
easier to check this. We can fit all data at largeLu and
relatively smallua to a form that allows both spacing an
volume dependence,

D^f2&c

u
5A1B~Lu!2yt1C~ua!2. ~6.4!

Based on our fits at fixedLu and fixedua, we expect this
form is sufficient if we use only data withLu>384 andua
<8. Fitting all such data givesD^f2&c /u520.001 194 (8)
with x2/(degrees of freedom)515.3/8 ~5% confidence
level!. The result is consistent with our quoted result, and
smaller errors. The quality of the fit is not very good, whi
is why we quote the larger error bars of our other analy
However, adding a term that allowsB to vary with ua ~that
is, aua andLu dependent term! does not improve the qual
ity of the fit. Adding the termD(Lu)2yt(ua)m and doing a
four parameter fit changesx2 by less than 1 form52 or m
53; so the data show no evidence that such a term is la
enough to be important.

We do not understand why the fit to all data has suc
largex2 @x2/(degrees of freedom)515.3/8#. The three low-
est ua data points are the main outliers; the twoua53
points are each at 2s. However, the (Lu,ua)5(384,3) point
is off in the opposite direction as the (Lu,ua)5(576,3) and
(Lu,ua)5(384,4) points, so there is no systematic trend
the residuals and we have no reason to believe that s
additional lattice-spacing or volume-dependent term is m
ing in our fitting procedure.

Finally, there is a minor, independent issue in our m
analysis. The statistical part of our errors in our original
finite volume and continuum extrapolations are correlat
since both of these extrapolations included the (Lu,ua)
5(576,6) data point. However, since the error from the c
tinuum extrapolation dominated that from the infinit
volume extrapolation, any statistical cross correlation
tween those errors will not have a significant effect.
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APPENDIX A: TABULATED DATA

To give a rough idea of the size of our data sets, we h
listed in Table I a nominal decorrelation timet for each
simulation, along with the amount of data we have in units
2t. In our convention,t50.5 represents completely unco
related data. Our decorrelation times are in units of swe
where one ‘‘sweep’’ consists of both a heatbath sweep an
multi-grid update. More than one time is shown in cas
where simulations were made at different values ofr ~before
reweighting!.
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Our nominal decorrelation time is the largest integra
decorrelation time of the various expectations required in
computation of the Binder cumulant and of^f2&. These in-
clude the integrated decorrelation times associated with m
surements ofP, Pf2, Pf̄2, andPf̄4 ~and also times asso
ciated with cross correlations between these!, where

P[expS 2
1

2
Vdrf2D ~A1!

is the canonical reweighting factor, as in Eq.~2.22!. We
found in all cases that the longest decorrelation time was
associated withf̄2. The integrated decorrelation time for
single operator is given by

t[
1

2
1 (

n51

`
C~n!

C~0!
, ~A2!

where

C~n!5
1

~N2n! (
i 51

N2n

OiOi 1n2S 1

N (
i 51

N

Oi D 2

, ~A3!

is the autocorrelation function associated with the desi
operatorO. In practice, the sum in Eq.~A2! must be cut off
because of degrading statistics, and we cut it off wh
C(n)/C(0) first drops below 0.05.

APPENDIX B: MATCHING CONTINUUM AND LATTICE
THEORIES

1. General discussion

In this appendix, we discuss theO(a) and O(a2) im-
provement of three-dimensional scalar field theory on
lattice. For the sake of generality, and because it is not
harder, we will discuss O(N) scalar field theory ofN real
fields f5(f1 ,f2 , . . . ,fN). The case of interest to th
present paper isN52. As in Eq.~2.12!, the lattice Lagrang-
ian is defined to be

L5a3(
x

FZf

2 (
i 51

N

~2f i“ lat
2 f i !1

Zr~r 1dr !

2
f2

1
u1du

4!
~f2!2G , ~B1!

where

f2[(
i 51

N

f i
2 , ~B2!

and f, r, and u are just the~UV renormalized! continuum
fields and parameters in lattice units. So,f lat5a1/2fcont,
ulat5aucont, andr lat5a2r cont. Of these,r cont is the only con-
tinuum parameter that requires UV renormalization a
should be understood as renormalized with dimensio
regularization and theMS scheme. In this appendix, we wi
calculate, to a given order in lattice spacing, the necess
3-11
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TABLE I. All analysis data, including nominal decorrelation timet.

Lu ua L/a D^f2&c /u rc /u2 tdecorr Nsweeps/2t

8 1 8 0.2325~58! 20.02992(98) 0.6 16868
24 1 24 0.0400~28! 20.00207(37) 0.5 1070
24 3 8 0.0420~21! 20.00249(26) 0.5 11470
36 3 12 0.02164~96! 0.00027~13! 0.5 38070
48 3 16 0.012322~95! 0.001233~12! 0.6 231566
72 3 24 0.00575~15! 0.001906~25! 0.7 9993
96 3 32 0.003212~65! 0.0021036~79! 0.8 26406
96 6 16 0.0030836~86! 0.0025981~12! 0.8 1235650
144 2.25 64 0.001039~18! 0.0021542~24! 1.3 205420
144 3 48 0.0010254~98! 0.0022783~16! 1.4 158458
144 3.6 40 0.0010253~83! 0.00237477~99! 1.1 373163
144 4.5 32 0.0010267~97! 0.0025199~13! 1.2 370142
144 6 24 0.0010083~44! 0.00275922~62! 1.1 940826
144 7.2 20 0.0009940~40! 0.00295088~70! 1.0 863928
144 9 16 0.0009222~43! 0.00323454~58! 1.1 1213680
144 12 12 0.0009256~43! 0.00372103~51! 0.7 1844310
192 6 32 0.0001118~88! 0.0028151~14! 1.7 192227
288 3 96 20.0004299(90) 0.0023640~13! 5.7 21604
288 6 48 20.0005625(76) 0.0028531~10! 3.4 50516
384 3 128 20.0007484(57) 0.00238397~94! 3.7/5.7 69038
384 4 96 20.000799(11) 0.0025498~15! 7.4 12316
384 4.8 80 20.0008055(80) 0.0026760~14! 6.3 18797
384 6 64 20.0008455(71) 0.0028682~10! 5.7 14591
384 8 48 20.0009131(78) 0.0031875~12! 3.7 20958
384 12 32 20.01217(18) 0.0038358~19! 3.6 6021
576 3 192 20.000992(11) 0.0023957~16! 17.5/8.5 4458
576 4.5 128 20.0009993(64) 0.00263522~80! 12.5 12212
576 6 96 20.0010470(83) 0.0028761~11! 7.4/7.9 7196
576 7.2 80 20.0010968(68) 0.00306843~97! 10.8/6.2 13493
576 9 64 20.0011398(80) 0.0033525~11! 10.5 4007
768 6 128 20.001142(11) 0.0028802~13! 14.3/13.1 3074
1152 6 192 20.0011999(86) 0.00288154~80! 7.4/18.5/10.1 6342
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I C.
counter-termsZf , Zr , dr , anddu required to implement this
correspondence between continuum and lattice variables
match the lattice and continuum theories to high orders ina,
we would need to include other operators in our latt
theory, such asf6, f2u“fu2, and so forth. However, thes
will turn out to be unnecessary at the order to which we w
work.

A given local lattice action will never perfectly reproduc
the continuum action. For smallua, the error in how a given
lattice action treats physics at the distance scalea may be
computed and compensated for by perturbative calculati
The discrepancy in how a given lattice action, with giv
parameters, treats the nonperturbative physics at the dist
scale 1/u cannot. It is therefore important that the lattic
action be close enough to the continuum action that error
the scale 1/u are higher order ina than whatever is desired
In order to improve our simulations and measurement
D^f2&c to O(a) accuracy, it is necessary to~a! match the
lattice action and parameters so that, at the scale 1/u, it re-
produces the physics of the continuum action up to and
cluding O(a); and~b! match the lattice and continuum defi
06611
To

l

s.

ce

at

f

-

nitions of the operatorf2 to the same order, so that th
measurements ofD^f2&c will match up. Actually, the first
requirement is slightly overstated. To measureD^f2&c to
O(a), it is not necessary to match the lattice and continu
parametersr to that order. That is because, in the simu
tions, we will simply vary the coefficient off2 in the action
until we find the transition—we do not need to know i
relation tor cont to do this.

In this appendix, we will matchr cont to the lattice just to
O(a0). This will make possible a determination of the co
tinuum value of the critical valuer c , but O(a) errors will
remain and must be removed by extrapolation to the c
tinuum limit. We will match the continuum and lattice defi
nitions of the operatorf2 through O(a), so that we can
make anO(a) improved calculation of̂f2&c . We will also
match the lattice action throughO(a2) @except for the
matching ofr just discussed#, rather than simplyO(a), be-
cause it is not that difficult@compared to theO(a) matching
of f2# and should improve theua dependence of infinite-
volume extrapolations of our data, as discussed in Sec. V
3-12
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At tree level, the infrared behavior of the lattice and co
tinuum theories are the same up to corrections suppresse
at leasta2; the power ofa may be higher if we choose th
lattice¹2 appropriately. However, there are ‘‘radiative’’ co
rections induced in the infrared~IR! physics by the nonlin-
earity of the theory, together with the UV difference betwe
the lattice and continuum theories. The diagrams of Fig.
for instance, differ on the lattice from their continuum valu
because the dispersion relations of the scalar fields diffe
the UV, and the loop momentum integration integrates o
this region. These effects are suppressed by powers o
couplings; the radiative correction to the scalar four-po
function, for instance, clearly depends onu2. On dimen-
sional grounds, the difference between lattice and continu
values of this diagram must go asu2a, so these diagram
lead toO(a) differences between the lattice and continuu
theories. The difference between lattice and continuum
ues of these diagrams may be removed by a renormaliza
of the parameters of the lattice theory.

As discussed in the main text, we will be interested n
only in how to renormalize the parameters of the action
also in how to translate expectation values of the operatorf2

between the lattice and continuum. It will be convenient
talk directly about the operatorf2, which is associated with
UV divergences in the continuum, rather thanD^f2&, which
is not. We will definef2 in the continuum also usingMS
renormalization. In general, operators with the same sym
try can mix under renormalization, and the lattice opera
f2 will correspond to some superposition of the unit co
tinuum operator, the renormalizedf2 continuum operator,
and higher-dimensional renormalized continuum opera
such asf4:

a21~f2! lat5c01c2~f2!cont1c4~f4!cont1•••. ~B3!

However, our particular interest is in expectation values
the transition. For this application, the effects of higher-a
higher-dimensional operators on the right-hand side of
~B3! become suppressed by more and more powers ofua.
For example,c2 is O~1!, and the expectation value of th
renormalized continuum operatorf2 is, by dimensional
analysis,O(u) at the transition. So, thec2(f2)cont term con-
tributesO(u) to the expectation. In contrast, the lowest-ord
diagram that contributes to mixing betweenf2 and f4 is
shown in Fig. 17 and givesc45O(u2a3), where theu2

FIG. 16. The one-loop graphs needed for the renormalization
cross represents af2 insertion, which in turn could represent eith
~i! a perturbative insertion of therf2 term of the action or~ii ! the
f2 operator associated with calculating the expectation^f2&.
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counts the two vertices in Fig. 17 and thea3 then follows by
dimensional analysis. But, also by dimensional analysis,
renormalized continuum expectation^f4& is O(u2). So, the
c4(f4)cont term contributesO(u4a3) to the expectation,
down by three powers ofua from c2(f2)cont. Our goal will
be to compute theO(a) corrections toD^f2&c , for which it
is therefore adequate to compute justc0 andc2 above.

The diagrams that contribute toc2 are the same as thos
that contribute to the multiplicative renormalization of th
coefficientr of f2 in the action, and 1/c2 is the same as the
Zr introduced previously. Rearranging the terms in Eq.~B3!,
we will write

a~f2!cont5Zr~f2! lat2df21O„~ua!4
…, ~B4!

where df2 represents ac-number (ac0 /c2) parametrizing
mixing with the unit operator, which we shall calculate.

We will see later that, for the purpose of calculating t
O(a) corrections toD^f2&c , all that is strictly required is
one-loop results forZf , Zr , du, and dr , and three-loop
results fordf2. To determiner c @just atO(a0)# requires tree
results forZf , du, andZr , and two-loop results fordr . If
one made a three-loop computation ofdr ~which we have
not!, one could obtain theO(a) corrections forr c as well. To
match the action throughO(a2), except forr, one wants a
two-loop determination ofZf anddu. As discussed in Sec
VI C, it will also be useful to have a two-loop result forZr .

Now we turn to the calculations. For the remainder of th
appendix, we will work exclusively in lattice units (a51).

2. One-loop results

A one-loop renormalization calculation will determine th
O(a) contributions to the quantitiesZf , du, and Zr , and
will find the O(1/a) contributions todm2 and d^f2&. The
details of the power counting used here may be found
@23#. In the small lattice-spacing limit, the momentum sca
r 1/2 associated with the parameterr is small compared to the
scale 1/a where the lattice and continuum theories differ. S
for the specific purpose of a calculation to match the latt
and continuum theories, therf2 term in the action~as well
as theuf4 term! may be treated perturbatively.

The required graphs are shown in Fig. 16. Evaluating
graphs requires choosing a lattice Laplacian, and for co
pleteness we will consider both the unimproved Eq.~2.2! and
improved Eq.~2.3! choices described in the main text. Th
evaluation of the one-loop graphs requires two integrals

A FIG. 17. A diagram contributing to the mixing of thef2 andf4

operators.
3-13
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S

4p
[E

BZ

d3k

~2p!3

1

k̃2
, ~B5!

j

4p
[E

BZ

d3k

~2p!3

1

~ k̃2!2
2E

R3

d3k

~2p!3

1

k4
. ~B6!

Here, we use the shorthand BZ to meank lies within the
Brillouin zone, meaning eachkiP@2p,p#. The notationk̃2

is introduced in Eq.~2.4!. The integrals that determinej are
each IR singular and some regulation is implied, for insta
addingm2 to bothk2 and k̃2 and taking the limit asm2→0.
The numerical values of the integrals, accurate to61 in the
last digit, are6

SU53.175 911 535 625 22, S I52.752 383 911 307 52,

jU50.152 859 324 966 101, j I520.083 647 053 040 968.
~B7!

Note that the sign ofj depends on whether we use an im
proved lattice Laplacian. This is possible becausej repre-
sents the difference of a graph between lattice and contin
theories. The lattice contribution is larger inside the Brillou
zone, but the continuum integral receives contributions fr
outside the zone as well; the sign depends on which effe
larger.

At one loop, the renormalizations are~in lattice units!

du1l5
~N18!

6

j

4p
u2, ~B8!

Zf,1l2150, ~B9!

Zr ,1l215
~N12!

6

j

4p
u, ~B10!

dr 1l52
~N12!

6

S

4p
, ~B11!

df1l
2 5N

S

4p
. ~B12!

3. Two-loop results

For the renormalizationsZf andZr , it makes no sense to
carry the renormalization to two loops unless we use
improved lattice Laplacian, because already at tree level,
unimproved Laplacian givesO(a2) level errors in the propa
gator. The two-loop results require several more graphs
well as the inclusion in one-loop graphs of one-loop m
and coupling counterterms.~See Fig. 18.! Four more inte-

6An analytic result @6# for SU is 8/p(18112A2210A3

27A6)@K„(22A3)2(A32A2)2
…#2, where K(k)5F( p

2 ,k) is the
complete elliptic integral of the first kind.
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grals are needed, which we will evaluate in a moment. T
complete two-loop result for generalN is

du2l2du1l5F ~N216N120!

36 S j

4p D 2

2
~5N122!

9

C1

~4p!2Gu3, ~B13!

Zf,2l215
~N12!

18

C2

~4p!2 u2, ~B14!

Zr ,2l2Zr ,1l5F S N12

6 D 2S j

4p D 2

2
~N12!

6

C1

~4p!2Gu2,

~B15!

dr 2l2dr 1l5
~N12!

18~4p!2 FC31 lnS 6

m̄
D 23SjGu2, ~B16!

df2l
2 2df1l

2 5
N~N12!

6

Sj

~4p!2 u. ~B17!

The three numerical constantsC1 , C2, andC3 are given for
the improved Laplacian in Eq.~2.14!. Only C3 can be use-
fully defined for the unimproved case,7 where it is C3,U
50.088 480 10.

Now, we detail the calculation of the constantsC1
through C3. We will use the following shorthands:*k,BZ
means *d3k/(2p)3, with range the Brillouin zone
@2p,p#3; whereas*k,R3 is the same but integrated over a
3-space. Further, we define the following integrals, wh
will come up repeatedly:

7In Ref. @24#, this constant is calledz.

FIG. 18. All required two-loop graphs and one-loop graphs w
one-loop counterterm insertions, shown as heavy dots on l
~mass counterterms! or at vertices~coupling counterterms!. The last
eight graphs cancel in pairs. Diagrams~a!, ~d!, and ~e! are not
separately IR convergent; diagram~d! must be distributed betwee
the other two to produce IR convergent integrals.
3-14
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I L~p!5E
q,BZ

1

q̃2~p1q̃!2
, ~B18!

I C~p!5E
q,R3

1

q2~p1q!2
5

1

8upu
. ~B19!

We begin with the two-loop vertex correction, graph~a!
of Fig. 18. The required integral, including the appropria
amount of the one-loop counterterm graph~d!, is

C1

~4p!2
5E

k,BZ

1

~ k̃2!2 H I L~k!2
j

4pJ 2E
k,R3

1

k4
I C~k!.

~B20!

We rearrange the original integral into three parts,

E
k,BZ

1

~ k̃2!2 H I L~k!2
1

8k
2

j

4pJ 1E
k,BZ

1

8k S 1

~ k̃2!2
2

1

k4D
2E

k,R32BZ
S 1

8k5D . ~B21!

All three of the above integrals are convergent, provided
use the improved Laplacian. The first integral is IR w
behaved because the two counterterms cancelI L(k) up to a
k2 correction, which in the smallk limit is I L(k)2(1/8k)
2(j/4p)→(0.012 543 8)k2/4p.

To get accurate numerical answers, we perform all
integrals by quadratures. Dealing with the double poles
appear inI L is touchy, and requires adaptive mesh refinem
techniques. We improve the precision of each final result
repeating the full integration at several spacings and extra
lating ~Richardson extrapolation!. The first integral in Eq.
~B21! gives (0.036 000 3)/16p2, and the second give
(0.054 568 958)/16p2. The last integral, overR32BZ, may
be rearranged into

2
3

16p5E0

1

dxE
0

1

dy
1

~11x21y2!5/2
, ~B22!

which gives2(0.035 507 296 027•••)/16p2. These sum to
give C150.055 061 2.

Besides this graph, there is graph~e!, which gives

S E
k,BZ

1

~ k̃2!2D 2

2S E
k,R3

1

k4D 2

, ~B23!

which is not IR convergent. However, including22 times
the counterterm diagram~d!,

22S E
k,BZ

1

~ k̃2!2D S Ek,BZ

1

~ k̃2!2
2E

k,R3

1

k4D , ~B24!
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gives2(j/4p)2. No new integrals are required. It is a no
trivial check on the calculation that the sum of the coe
cients arising from diagrams~a! and~e! precisely absorb dia-
gram ~d!.

The next integral is theO(p2) contribution from the set-
ting sun diagram~b!,

C2

~4p!2
5 lim

p→0

1

p2 H Ek,BZ
S 1

~k1 p̃!2
2

1

k̃2D I L~k!

2E
k,R3S 1

~k1p!2
2

1

k2D I C~k!J . ~B25!

The first trick is to note that

E
k,BZ

S 1

~k1 p̃!2
2

1

k̃2D 50, ~B26!

just by shifting the integration variable for the first term. S
we may add an arbitrary constant toI l(k) in Eq. ~B25!,
and we choose the constant2j/4p. This will prevent IR
divergences in what follows. We are now free to expa
1/(k1 p̃)2 to second order inp. After averaging over direc-
tions for p, we find

1

~k1 p̃!2
2

1

k̃2
→p2F 1

3 (
i

S 8 sinki2sin 2ki

3 D 2

~ k̃2!3

2

1

3 (
i

S 4 coski2cos 2ki

3 D
~ k̃2!2

G[p2M~k!.

~B27!

The equivalent expression in the continuum case isp2/3k4.
Rearranging the terms a little, we can write

C2

16p2
5

21

24 Ek,R32BZ

1

k5
1E

k,BZ

1

8k S M~k!2
1

3k4D
1E

k,BZ
M~k!F I L~k!2

1

8k
2

j

4p G . ~B28!

We have seen the first integral. The second giv
(0.031 075 769 5)/16p2 and the last gives (0.014 201 6
16p2; so C250.033 441 6.

Next, we must compute theO(p0) part of the setting-sun
diagram. The continuum diagram is IR and UV logarithm
cally divergent, while the lattice diagram is only IR logarith
mically divergent. It is convenient to IR regulate both b
introducing a mass on one line. In this case, the continu
integral may be performed inMS, leaving a lattice integra
minus an analytically determined counterterm@24,25#.
Choosing to separate the renormalization dependence a
with the same finite constant as in the previous literat
@24,25#, the constantC3 is given by
3-15
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C3

~4p!2
5 lim

m→0
H E

k,BZ

1

k̃21m2
I L~k!2

1

16p2 F1

2
1 ln

6

mG J .

~B29!

The problem with this expression is the logarithm. To
move it, we add and subtractI C(k)51/8k to I L(k). The in-
tegral

E
k,BZ

1

k̃21m2 F I L~k!2
1

8kG ~B30!

is IR convergent, and them→0 limit may be taken immedi-
ately. It evaluates to2(0.068 584 32)/16p2, unless we use
the unimproved lattice Laplacian, in which case it
(0.609 533 43)/16p2. We rearrange the remaining terms to

E
k,BZ

S 1

k̃21m2
2

1

k21m2D 1

8k
1E

k,BZ

1

8k~k21m2!

2
1

16p2 F1

2
1 ln

6

mG . ~B31!

Again, for the first integral them→0 limit may be taken
immediately, and the numerical value is (0.161 799 60
16p2, or (0.433 641 120 15)/16p2 if we use the unimproved
Laplacian. For the last integral, we cut the integration reg
into the ball of radiusp and the region within the Brillouin
zone but outside the ball:

E
k,BZ

1

8k~k21m2!
5

1

2p2E0

p k2dk

8k~k21m2!

1E
k,BZ

1

8k~k21m2!
Q~ uku2p!.

~B32!

The first integral is easy and gives ln(p/m)/16p2 plus
terms power suppressed inm. When added to (21/
16p2)@ ln(6/m)11/2#, this cancels the ln(m), leaving (1/
16p2)@ ln(p/6)21/2#. The final integral has had the smallk
part of the integration range removed, so them→0 limit is
trivial. It may then be reduced to

1

16p2E dV

4p
ln

R~cube!

R~ball!

5
1

16p2

12

p E
0

p/4

dfE
0

arctan(secf)

sin~u!du ln@sec~u!#,

~B33!

which numerically equals (0.192 335 131 95)/16p2. Note
that at no point have we had to deal numerically with
integral that is logarithmically divergent inm, or that still
containsm at all.
06611
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Combining terms givesC3520.861 479 16, unless we
use the unimproved lattice Laplacian, in which case it
C3,U50.088 480 10.

4. Three-loop result for df2

In principle, one could extend all the renormalizatio
counterterms we have considered to three-loop order. H
ever, for many of them, this requires including mixing
different dimensions of operator insertions and includi
counterterms for radiatively induced high-dimension ope
tors in the Lagrangian. However, the three-loop contribut
to the additive countertermdf2 is an exception: it gives the
O(a) corrections toD^f2&c , and we have already seen th
we can ignore higher-dimensional operators at this order.
calculation ofdf2 is the least complicated of the three-loo
calculations we might envision, and does not require the
sult of any other three-loop calculations or any of the cou
terterms that would be needed in a complete three-l
matching. The relevant diagrams are given in Fig. 19.
find

df3l
2 2df2l

2 5F S N12

6 D 2

j2S1
~N12!

18
@C423SC12SC2

1j log~am̄ !#G Nu2

~4p!3 2
j

4p
Nr. ~B34!

Here, the constantC4 arises from the basketball diagram
Fig. 19, together with part of the mass-squared countert
diagram. The explicit renormalization scale dependence
Eq. ~B34! cancels the implicit dependence ofr 5r (m̄) in the
last term.

Our definition ofC4 is that@C41j log(am)#/(4p)3 equals
the lattice value of the basketball diagram,~A! in Fig. 19,
minus diagram~C! taking only the setting-sun part of th
two-loop mass counterterm. Explicitly,

C41j log~am!

~4p!3
5E

k,BZ

1

~ k̃2!2 S Ep,BZ

1

p̃2
@ I L~p1k!2I L~p!#

1E
p,R3

1

p2
I C~p!D

2E
k,R3

1

k4Ep,R3

1

p2
I C~p1k!. ~B35!

FIG. 19. Three-loop vacuum diagrams needed fordf2 at three
loops. There are seven additional diagrams either involving
loop mass counterterms or tadpoles, which cancel among th
selves.
3-16



-
e
u-
to
w
m

cto

gu

ra

on
e

d
it

her
ob-
han
gu-

in

ass
ur

un-

lts

ult

of
ice
een

MONTE CARLO SIMULATION OF O~2! f4 FIELD THEORY IN THREE DIMENSIONS PHYSICAL REVIEW E 64 066113
Here, I L(p1k) and I C(p1k) arise from the basketball dia
gram, whileI L(p) and I C(p) are from the setting-sun piec
of the counterterm. Every term here is implicitly IR reg
lated by a common infinitesimal mass on every propaga
but the way we will perform the integrations means that
will never need this regulation explicitly. Also, continuu
integrals are implicitly renormalized inMS, which will be
relevant.

It is convenient to add and subtract the appropriate fa
to put theI C(p1k) factor inside the BZk integral. We add
and subtract

F E
k,BZ

1

~ k̃2!2
2E

k,R3

1

k4G Ep,R3

1

p2
I C~p1k!. ~B36!

The p integral may be evaluated inMS ~note that we do not
need its value in the deep IR where the implicit mass re
larization becomes important!, and gives

E
p,R3

1

p2
I C~p1k!5

1.52 log~k/m!

16p2
. ~B37!

The constant terms may be pulled out of thek integrations;
the remainingk integral is Eq.~B6! and givesj/4p. The
constant parts therefore yield@1.51 log(am)#j/(64p3). The
ln k leads to the integral

1

16p2 S Ek,BZ

2 ln~ak!

~ k̃2!2
2E

k,R3

2 ln~ak!

k4 D 5
0.308 37

64p3

~B38!

for the improved Laplacian. Equation~B35!, after subtract-
ing Eq. ~B36!, becomes

E
k,BZ

1

~ k̃2!2 S Ep,BZ

1

p̃2
@ I L~p1k!2I L~p!#

2E
p,R3

1

p2
@ I C~p1k!2I C~p!# D . ~B39!

It is convenient to split off the part of the continuump
integration that lies outside the Brillouin zone as a sepa
integration, which does not suffer from divergences,

1

8Ek,BZ

1

~ k̃2!2Ep,R32BZ
S 1

p3
2

1

p2up1ku
D 5

0.000 317 57

64p3
.

~B40!

This leaves as the final integral we must consider,

E
k,BZ

1

~ k̃2!2Ep,BZ
S 1

p̃2
@ I L~p1k!2I L~p!#

2
1

p2
@ I C~p1k!2I C~p!# D . ~B41!
06611
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This integration is finite and over a finite integration regi
~provided we make a prescription that the argument of thp
integral is interpreted as the average overp and 2p of the
quantity written!. The integration is nine dimensional an
contains some delicate integrable singularities. We find
convenient to use adaptive Monte Carlo integration rat
than quadratures. Monte Carlo integration is somewhat pr
lematical when there are integrable singularities. Rather t
finding clever changes of variables to get rid of such sin
larities, the simplest thing to do is to include a small mass
all the propagators~thus, cutting off all singularities!, vary
that mass, and then numerically extrapolate the zero m
limit from the results of the Monte Carlo integrations. O
result for the integral~B41! is (0.098560.006)/(4p)3. Com-
bining terms, we then haveC450.2817 (6) for the improved
Laplacian.

5. Minimalist expression for DŠf2
‹c through O„a…

Some of the development in the preceding sections is
necessary for the isolated goal of getting anO(a) improve-
ment ofD^f2&. It is possible to combine the previous resu
in the more compact form

D^f2&cont5
Zr

Zf
D^F2& lat1

Nj

4p
ar12

N~N12!

18

C
~4p!3

au0
2

1O~u3!, ~B42a!

C[C41j ln 61jC3 . ~B42b!

Here,F is thebare lattice field, andu0 the bare lattice cou-
pling, corresponding to the bare lattice action~2.1!;

D^F2& lat5^F2& lat2
NS

4pa
; ~B42c!

r 1 stands for the tadpole-adjusted mass,

r 1[r 01
~N12!

6
u0

S

4pa
, ~B42d!

which is O(u2) near the transition; andr 0 is the bare mass
used in the bare lattice action~2.1!. We have retreated from
lattice units and explicitly show all factors ofa. SinceD^F2&
is O(u) near the transition, we only need the one-loop res

Zr

Zf
.11

~N12!

6
ua

j

4p
~B42e!

for Zr /Zf .
To finish the relationship between the measurement

D^f2&/u and the bare fields and parameters of the latt
Lagrangian, we only need the one-loop relationship betw
the continuum and bare lattice couplings

u0.u1
~N18!

6
u2a

j

4p
. ~B42f!
3-17
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The form ~B42! has the conceptual advantage of not
troducing the renormalization scalem̄, since its introduction
is unnecessary if one’s only interest is inD^f2&c and not the
value of r c . Equation~B42! also makes clear that nothin
depends onC1 and C2 at this order, so that one does n
really need those integrals. And it makes clearer that ther
no O(a0) correction toD^f2&, which is obscured by Eqs
~2.15! and ~2.16!. That is,

D^f2&cont5D^F2& lat1O~au2!, ~B43!

as in Eq.~2.11!.
However, this is not how we have implemented our c

culation ofD^f2&c when quoting numbers from simulation
What we have done is described in the text and the ea
parts of this appendix and, though equivalent throughO(a),
will give slightly different numerical values because of d
ferences in higher orders ina.

APPENDIX C: LOGARITHMS IN LARGE-VOLUME
SCALING FOR aÄ0

In this section, we review standard renormalization-gro
arguments about the free energy and verify that at2ln L term
appears in the free energy whena50. If one increases
renormalization scale by a ‘‘blocking’’ factor ofb, the free-
energy density of the blocked system is related to the
energy of the original system by a transformation law of
form

F~$K%!5G~$K%!1b2dF~$K8%!, ~C1!

where F is the free energy per block,$K% represents the
couplings of the theory, andG is an analytic function~de-
pending onb) that represents the contributions to the fr
energy from the degrees of freedom that have been block8

Iteratingn times, this becomes

F~$K%!5 (
j 50

n21

b2 jdG~$K ( j )%!1b2ndF~$K (n)%!, ~C2!

where$K ( j )% is the j th iterate of$K%. If we start with a block
size of a and iterate all the way out to sizeL, we have
n5 logb(L/a).

For t very small but nonzero, the description of the syst
will first flow towards the critical point, as one blocks t
larger and larger distances. But it will then eventually flo
away from the fixed point, closely following one of the tw
unique ‘‘outflow’’ trajectories from the fixed point~one for
t.0 and one fort,0), corresponding to all irrelevant cou
plings being set to zero. The inhomogeneous partG of the
transformation law~C2! will generate singular behavior a
t→0, which may then be written as

8Our presentation follows, for example, chapter 3 of Ref.@26#,
which is one of many nice introductions to the renormalizat
group. OurF andG are that reference’sf andg. We useF to avoid
confusion withf in the text, which was the free energy per physic
volume rather than per block.
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F~ t !; (
j 50

logb(L/a)

b2 jdG~bjytt !, ~C3!

wherebjytt parametrizes flow along the outflow trajector
For the infrared behavior at largeL and small t, we can
replace the sum by an integration. Changing integration v
able tos[bjytt,

F~ t !;
td/yt

yt ln bEt

t(L/a)yt

sa23G~s!ds, ~C4!

wherea522d/yt . For a50, this is

F~ t !;
2t2

d ln bEt

t(L/a)d/2

s23G~s!ds. ~C5!

To help tame the singularity ass→0, integrate by parts two
times. This leaves an integral proportional to

t2E
t

t(L/a)d/2

s21G9~s!ds, ~C6!

plus terms that fit the too-naive scaling form~4.12!. The
remaining integral may be rewritten as

G9~0!t2ln~L2d/2!1t2E
t

t(L/a)d/2

s21@G9~s!2G9~0!#ds.

~C7!

The second term has the desired analyticity properties of
too-naive scaling form~4.12!, and the first term is the loga
rithm of Privman and Rudnick appearing in Eq.~4.14!.

APPENDIX D: OUR OWN ANALYSIS OF Cc

1. Numerical simulation

In this appendix, we discuss our own attempt to determ
Cc , to make a crude check of the value we take from R
@13#. The scaling of the intersection valuesC3(L1 ,L2) of
cumulant curvesC(r ) is

C3~L1 ,L2!2Cc;
L1

ytL2
2v2L2

ytL1
2v

L1
yt2L2

yt
5

b2v2byt

12byt
L1

2v

~D1!

for L1 ,L2→`. This is a simple consequence of Binder
analysis@9#, but, for the sake of completeness, we brie
outline the argument in Appendix D 2.

We would like to chooseL as large as possible, in order t
make the scaling law~D1! as accurate as possible, so that w
may use it to extrapolate a good value ofCc . Our ultimate
interest in this paper is to study continuum O~2! theory,
which requiresua!1 and for which the scaling limit is
L/a@1/ua. But L/a@1/ua implies that smallua simula-
tions are an inefficient choice for getting as far as poss
into the scaling limit. BecauseCc is universal, we may ex-
tract it from largeua simulations rather than smallua simu-
lations.@In fact, we could use any model in the same univ

l
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sality class.# Our simulation code is optimized to perform
best if ua is not extremely large, and so we have chosen
extractCc from data taken withu0a560. Becauseu0a560
is not a small value ofua, the O(a) improvements to the
action are pointless; unlike other simulations reported in
paper, we quote quantities in terms of the bare lattice par
eters.

A variety of intersection valuesC3(L1 ,L2) of C(r )
curves are plotted in Fig. 20 against (L1

ytL2
2v

2L2
ytL1

2v)/(L1
yt2L2

yt) which, by Eq.~D1!, should lead to a lin-
ear relationship at largeL1 ,L2. The errors on points sharin
an L value are correlated, and we compute and use the
correlation matrix for making fits. For the sake of simplicit
however, we have only fit the subset of data withL152L2,
with results forCc and the associated confidence levels giv
in Table II. If we naively include smaller and smallerL until
the confidence level of the fit becomes poor, we would fit
the way down toL54 and obtain

Cc51.240 2~7! ~D2!

FIG. 20. The valuesC3(L1 ,L2) corresponding to the intersec
tion points of pairs of the curvesC(r ) for different lattice sizes. The
horizontal axis has been chosen so that this relationship shou
linear asL1 ,L2→` ~which corresponds to approaching zero on t
horizontal axis!. Each point is labeled byL1 /a and L2 /a. The
linear fit shown is only to that subset of points withL152L2.

TABLE II. Results of linear fits to the subset of the data of F
20 with L152L2, and the corresponding confidence levels~‘‘NA’’
means not applicable!. The first row corresponds to a fit to tw
points, the second to three points, etc.

Fit Cc C.L.

L2 /a>16 1.229~9! NA
L2 /a>12 1.243~4! 6%
L2 /a>8 1.2404~22! 13%
L2 /a>6 1.2410~15! 25%
L2 /a>4 1.2402~7! 35%
L2 /a>3 1.2394~7! 1%
06611
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as our final result. We are suspicious that this result m
have a ‘‘tail wagging the dog’’ systematic error. Our smallL
data has smaller statistical error than our largeL data and
may be over weighted in the fit to what is supposed to
large L asymptotic behavior.~In particular, in an earlier
analysis where we had even poorer statistics on the largL
data, we found a result that disagreed even more drastic
from the result of Ref.@13#.!

2. Large-volume scaling of cumulant intersections

Let us quickly reproduce Binder’s result~3.5! for the scal-
ing of r 3(L1 ,L2)2r c . For largeL, we will focus on the
scaling piece of the cumulant that, in the notation of S
IV A, is

C~ t,$uj%,L
21!;Csing~bytt,$ujb

yj%,b/L !. ~D3!

Choosingb5L,

C.Csing~Lytt,$ujL
yj%,1!, ~D4!

whereCsing is a universal scaling function. Now, treatLytt
andujL

yj as small and Taylor expand, keeping track of on
the most important irrelevant operatoruj ,

C.Csing~0,0,1!1ALytt1BL2v. ~D5!

Note thatA andCsing(0,0,1) are universal, butB is not, be-
cause it depends on the value ofuj . Now look for the inter-
section for two different system sizes:

Csing~0,0,1!1AL1
ytt1BL1

2v5Csing~0,0,1!1AL2
ytt1BL2

2v ,

~D6!

which has solution

t.
B~L1

2v2L2
2v!

A~L2
yt2L1

yt!
~D7!

up to corrections suppressed by additional powers of 1L.
This is just the scaling~3.5! quoted forr 32r c . ~And one
seesa posteriori that it was justified to treatLytt as small in
the L→` limit.! All that is necessary to derive the scalin
~D1! of C3 is to plug Eq. ~D7! back into Eq.~D6! and
renameCsing(0,0,1) asCc .

In the main text, our procedure for defining the nomin
transition in finite volume, for our smallua simulations, is to
find the point whereC5Cc . From Eq.~D6!, one may verify
that this prescription gives

t.
B

A
L2yt2v;L2yt2v, ~D8!

as asserted in the main text.

APPENDIX E: SMALL Lu EXPANSION OF DŠf2
‹c

In this appendix, we compute the expected result
D^f2&c for small volumes in the continuum limit, where w

be
3-19
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define the nominal critical temperature in such volumes
ing Binder cumulants, as explained in Sec. III. We have
peatedly described ‘‘short-distance’’ physics~distance small
compared to 1/u) as perturbative, and so for small volum
(L!1/u), one might first try simple perturbation theory
computeD^f2&. The leading-order diagram contributing
D^f2& is shown in Fig. 16~d! and corresponds to

^f2&.
N

L3 (
p

1

p21r
, ~E1!

where for the sake of generality we have considered an ON)
model, and the actual case of interest isN52. The sum is
over the discrete momentap52pn/L associated with theL
3L3L periodic volume. There is a problem with Eq.~E1!,
however. Consider the mean-field theory approximationr c
50 to the critical value ofr. The sum then has an infrare
divergent term associated withp50. The problem is that it is
more accurately large-momentum physics that is pertu
tive, rather than small-distance physics. So, even wheL
→0, the physics associated with thep50 modes is nonper-
turbative. Since this is only one mode, we simply analyz
separately, and then treat all thepÞ0 modes perturbatively

1. The caserÄ0: Leading order

To illustrate the calculation, let us first computeD^f2& if
r 50. We’ll later come back to consider the actualr that is
chosen by the criteria of our simulations that the cumul
C5Cc . Consider the approximationS0 to the action where
we ignore everything but thep50 modesf0

S05E d3xF u“f0u21
u

4!
uf0u4G5

L3u

4!
uf0u4. ~E2!

Note that this result holds on the lattice as well as in
continuum. Thep50 contribution toD^f2& is then

^f0
2&.

E dNf0e2S0uf0u2

E dNf0e2S0

5S 4!

L3uD 1/2E dNxe2x4
x2

E dNxe2x4

5S 4!

L3uD 1/2GS N12

4 D
GS N

2 D . ~E3!

By dimensional analysis, the leading perturbative contri
tion of thepÞ0 modes tô f2& should be orderL21 and so
is dominated by the zero-mode contribution~E3!. Specializ-
ing to N52, we then have

^f2& r 50

u
5A 4!

~Lu!3/21O„~Lu!21
…

.
2.763 95

~Lu!3/2
1O„~Lu!21

…. ~E4!
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As we will see explicitly below, the UV subtraction tha
converts^f2& to D^f2& in the continuum limit is not rel-
evant until next order in (Lu)21, and soD^f2&/u also has
the expansion~E4!.

2. The caserÄ0: Next-to-leading order

Now, consider the leading-order perturbative contributi
d^f2& of the nonzero modes tôf2& from Eq. ~E1!,

d^f2&.
N

L3 (
pÞ0

1

p2 . ~E5!

This sum is UV divergent, and the UV divergence is simp
the free-field divergence discussed in Sec.~II A !. It is sub-
tracted when we computeD^f2& as opposed tôf2&. Note
that our prescriptions~2.11! or ~2.15! for computingD^f2&
in our simulations involve subtracting theinfinite volume
free-field result for^f2&. In the continuum limit, this sub-
traction turns the perturbation~E5! into

dD^f2&5
N

L3 (
pÞ0

1

p2 2NE
p

1

p2

5
N

~2p!2L F (
nÞ0

1

n2 2E d3n

n2 G . ~E6!

Individually, the sums and integrals above must be con
tently regulated, for example, by dimensional regularizat
or by keeping the system on a lattice with arbitrarily sm
lattice spacing.

There are a number of ways to evaluate the result num
cally. One is to start by regulating with dimensional regul
ization, working ind spatial dimensions. Then

dD^f2&5
N

Ld (
pÞ0

1

p2 2NE
p

1

p2 ~E7!

5
N

~2p!2Ld22 F (
nÞ0

1

n2 2E ddn

n2 G .
Now rewrite

1

n2 5E
0

`

dse2sn2
. ~E8!

The n1 , n2 , . . . , sums and integrals then factor, giving

(
nÞ0

1

n2 2E ddn

n2 5E
0

`

dsH @u3~e2s!#d212S p

s D d/2J ,

~E9!

where

u3~q![ (
k52`

`

q2(k2) ~E10!

is a special case of an elliptic theta function. The integral
the right-hand side of Eq.~E9! is absolutely convergent in
3-20
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d53, so we may now dispense with dimensional regulari
tion and setd to three. The integral is then easily done n
merically, giving

(
nÞ0

1

n2 2E ddn

n2 .28.913 63. ~E11!

For N52, one then has

dD^f2& r 50

u
.2

0.451 570

Lu
. ~E12!

The effect of interactions in the nonzero mode sector w
be perturbative for smallLu and will give higher-order con-
tributions toD^f2&. However, we must also consider inte
actions of the zero modef0 with the nonzero modes, whic
will give corrections to the actionS0 used in our earlier
analysis off0. For instance, the couplingu in S0 will pick
up corrections of orderLu2. This will generate anO(Lu)
relative correction to the zero-mode contribution~E4!, and so
that correction will be higher order than the contributi
~E12! computed above. A similar story will hold for correc
tions to r ~and for the effects of higher-dimensional intera
tions! with the complication thatr will receive some infinite
contributions in the continuum limit, corresponding to t
usual mass renormalization. The latter is absorbed by
usual renormalization ofr, and so one has

d^f2& r 50

u
.

2.763 95

~Lu!3/2
2

0.451 570

Lu
1O„~Lu!21/2

…

~E13!

if one interprets ther in the conditionr 50 as being renor-
malized r. ~The details of the renormalization scheme w
not matter at the order shown.!

3. The caseCÄCc

Now, instead of settingr 50, we will chooser so that the
cumulantC is equal to its critical value. Let us begin with
leading-order analysis and so focus on just thep50 sector.
For generalr, we then have

S05
L3r

2
uf0u21

L3u

4!
uf0u4 ~E14!

and

^f0
2k&5

E dNf0e2S0uf0u2k

E dNf0e2S0

. ~E15!

By a change of variables, this may be rewritten as

^f0
2k&5S 4!

L3uD k/2 I k~R!

I 0~R!
~E16!

where
06611
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I k~R![E
0

`

dye2y22Ryyk1(N22)/2, ~E17!

and

R[
r

2 S 4!L3

u D 1/2

. ~E18!

Now note that the volume averagef̄ of the field, used in
the definition of the cumulant, is simplyf0. Specializing
now to N52 and doing theI k integrals, one obtains

I 0~R!5
Ap

2
eR2/4erfcS R

2 D , ~E19!

I 1~R!5
1

2
@12RI0~R!#, ~E20!

I 2~R!5
1

4
@2R1~R212!I 0~R!#. ~E21!

The cumulant may be written

C[
^f0

4&

^f0
2&2 .

I 2~R!I 0~R!

@ I 1~R!#2 . ~E22!

A numerical search for the point whereC5Cc.1.243 gives

R.22.5073. ~E23!

At this R, the zero-mode contribution tôf2& is then

^f2&c5S 4!

L3uD 1/2I 1~R!

I 0~R!
1O„~Lu!21

…

5
6.440 03

~L3u!1/2
1O„~Lu!21

…. ~E24!

Since the result forR is a pure number, the definition
~E18! of R shows thatr is of orderAu/L3, which is smaller
by a power ofALu than any nonzero momentum square
which are orderL22. So r may be ignored in finding the
leading contribution of the nonzero modes, with the effe
thatdD^f2& is the same as in the earlierr 50 analysis. Add-
ing Eqs. ~E24! and ~E12! then produces the result~4.15!
quoted in the main text.

APPENDIX F: SYSTEM SIZE AND THE SIMULATIONS
OF GRÜTER et al.

One of the applications of O~2! field theory is to studying
the corrections to the critical temperature, due to inter
tions, for Bose-Einstein condensation of a nearly ideal n
relativistic Bose gas. This application has been previou
studied using numerical techniques. Our discussion of s
tem size in Sec. IV C has implications for an early study
Grüter et al. @22#, which is that much of the data collecte
was perhaps in insufficiently large volume. These simu
tions did not make use of O~2! field theory: They worked in
3-21
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the canonical ensemble and studied the path integral f
fixed numberNp of particles in a finite volumeV. If no
attempt were made to fit for large-volume corrections, th
Fig. 2 makes it clear that one should take roughlyLu>400
to keep those corrections moderately small. It is illuminat
to also consider the less restrictive condition of roughlyLu
>200. We may translate these conditions on system siz
the context of Bose-Einstein condensation by translating
parameteru of the O~2! field theory. For this application, th
relation is@2# u596p2a/l2, wherea is the scattering length
of the atoms,l5\A2p/mkBT is the thermal wavelength
andm is the mass of the atoms. Using the ideal gas appr
mation Tc.T05(2p\2/kBm)@n/z(3/2)#2/3 for the critical
temperature, one may write

na3.S Lu

96p2D 3 zS 3

2D 2

Np
~F1!
.E

.R
nd

ss

06611
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at the transition. The conditionsLu>400 or 200 may then be
translated into the conditions

na3>
0.51

Np
or

0.064

Np
. ~F2!

The largestNp used in the simulations of Gru¨ter et al. was
Np5216, and their extraction of the critical temperature d
pended on results withNp5125 as well. For the latter, ou
rough conditions for being in large enough volume then
quires na3>0.004 or 0.0005, depending on whether o
takes the more or less restrictive conditionLu>400 or Lu
>200. Grüter et al.quote results forna3 all the way down to
1025, and the majority of points in their smallna3 tail have
na3<1024. ~See Fig. 3 of Ref.@22#.! It therefore seems a
least possible that they may have had inadequate sys
sizes for their extrapolation of theua→0 behavior.
a
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